

Azienda USL Toscana nord ovest Dipartimento di Prevenzione

Area Funzionale Sicurezza Alimentare e Sanità Veterinaria

Monitoraggio di vegetali ad uso domestico privato. Esiti campagne di monitoraggio

La presente relazione analizza i risultati degli esiti analitici di campioni di vegetali prelevati in orti coltivati nell'abitato di Valdicastello Carducci per consumo domestico privato.

I campionamenti sono stati effettuati in tre periodi:

- 1. autunno 2015 (16 e 24 settembre 2015);
- 2. estate 2016 (19 e 21 settembre 2016);
- 3. autunno 2016 (15 e 16 novembre 2016).

I campioni effettuati nei primi due periodi rappresentano alcune delle attività previste dallo "Indagine epidemiologica per la valutazione dell'impatto dell'esposizione a tallio a seguito della contaminazione dell'acquedotto di Valdicastello e Pietrasanta centro" DGRT 1259 del 22/12/2014.

I campioni dell'ultimo periodo sono stati effettuati in collaborazione con Università degli Studi di Bologna – Dipartimento di Scienze Agrarie ed hanno avuto la finalità di approfondire le conoscenze sulla presenza di EPT nei terreni ricompresi nell'Ordinanza n. 53 del 12 agosto 2016 per verificare:

- a) possibilità di trasferimento di EPT dal suolo alla pianta
- b) concentrazione di EPT nei prodotti vegetali
- c) livelli di EPT nelle parti edibili dei prodotti vegetali
- d) eventuali problematiche di carattere sanitario conseguenti a consumi prolungati nel tempo di specie orticole con significativi livelli di EPT

Campionamenti

I campionamenti hanno interessato l'area individuata dal Comune di Pietrasanta, lungo il corso del Torrente Baccatoio a monte della Sarzanese, nella frazione di Valdicastello Carducci e nella frazione del Pollino nell'autunno 2016.

I siti di campionamento delle prime due campagne sono stati selezionati dall'Azienda USL Toscana Nord Ovest utilizzando le informazioni dei questionari compilati nell'ambito dell'indagine epidemiologica sopracitata; quelli della campagna autunnale 2016 sono stati individuati con l'Ufficio Ambiente del Comune di Pietrasanta e con Università degli Studi di Bologna – Dipartimento di Scienze Agrarie – Centro Sperimentale per lo studio e l'analisi del suolo.

L'Ufficio Ambiente del Comune di Pietrasanta ha garantito il supporto tecnico per la definizione delle coordinate nel sistema UTM – WGS84 in modo da poter rappresentare su mappa tutti i siti campionati (allegato 1).

I prelievi sono stati effettuati dal personale dell'UFC Sicurezza Alimentare e Sanità Pubblica Veterinaria dell'Azienda USL Toscana Nord Ovest mediante raccolta in campo delle specie orticole ed immissione dei vegetali in buste sigillate antimanomissione destinate al contatto con gli alimenti.

Nella campagna di campionamenti del 15 e 16 novembre 2016 le attività sono state effettuate in collaborazione con personale dell'Università di Bologna.

Sono stati prelevati, complessivamente 49 campioni di vegetali.

I campioni, mantenuti a temperatura di refrigerazione, sono stati inviati al Laboratorio di Sanità Pubblica di

Firenze – Azienda USL Toscana Centro (numero Accredia 705) reparto Chimica alimenti, acque, farmaci e cosmetici.

Le analisi sono state effettuate con ICP-MS.

Valori di riferimento

Allo stato attuale la normativa comunitaria (Reg. UE 1881/2006 e s.m.i.) fissa tenori massimi nei prodotti vegetali solo per As (limitatamente a riso e prodotti contenenti riso), Cd e Pb.

Per il Hg si fa riferimento, in analogia, al Reg. UE 1881/2006 e s.m.i.

Per il Ba si fa riferimento al rapporto "Assessment of the tolerable daily intake for barium" (Scientific Committee on Health and Environmental Risks – 22 marzo 2012 – European Commission).

Per il Cr si fa riferimento al rapporto "Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water" – Efsa Pnanel on Contamination in the food chain (CONTAM) - 13 March 2014.

Per il Tl si fa riferimento allo studio "Uptake of thallium by vegetables: its significance for human health, phytoremedation and phytomining" (Cher La Coste et al - Journal of Plant Nutrition, 24 (8) 1205 – 1215).

Per il Ni si fa riferimento alla pubblicazione "Nickel content of food and estimation of dietary intake" (Flyvholm MA,Nielsen GD,Andersen A. - Z Lebensm Unters Forsch - 1984 Dec;179(6):427-31 ed alla pubblicazione alla pubblicazione "Tolerable upper intake levels for vitamins and minerals" (Scientific Committee on Food Scientific Panel on Dietetic Products, Nutrition and Allergies – February 2006 – European Food Safety Authority)

Per il Mn si fa riferimento alla pubblicazione "Tolerable upper intake levels for vitamins and minerals" (Scientific Committee on Food Scientific Panel on Dietetic Products, Nutrition and Allergies – February 2006 – European Food Safety Authority).

Ove disponibili i dati, sono stati comparati i valori di EPT determinati nei terreni dall' Università di Bologna (valori di riferimento CSC riferiti a siti ad uso verde pubblico, privato e residenziale – D.L.vo 152/2006 e s.m.i.) e le loro concentrazioni nella parte edibile dei vegetali raccolti negli stessi terreni.

Premessa

Come già evidenziato nella nota prot. 2016/0111103/GEN del 23 giugno 2016 il legislatore comunitario ha inteso fissare tenori massimi di contaminanti che siano ragionevolmente ottenibili mediante buone pratiche agricole, di pesca e di fabbricazione, tenendo altresì conto dei rischi associati al consumo degli alimenti.

Gli atti regolamentari a tutela della sicurezza alimentare sono indirizzati dall'analisi delle evidenze scientifiche, e quindi dalla valutazione del rischio, che deve tener conto:

- a) degli alimenti in toto che presentano sia un apporto di nutrienti importante per qualità e quantità, sia un rischio di assunzione di sostanze indesiderate, talora anche di origine naturale;
- b) del consumo medio di ogni specifica matrice in un'alimentazione standard (es per un determinato contaminante i limiti ammessi per la carne possono essere 10 o 20 volte inferiori a quelli ammessi per le frattaglie il cui consumo è molto meno frequente);
- c) degli interventi mirati ad abbattere determinati rischi, di carattere igienico o tossicologico;
- d) dei gruppi di popolazione cui sono destinati gli alimenti (ad esempio, per lo Sn, i limiti degli alimenti in scatola destinati ai lattanti sono quattro volte inferiori a quelli degli alimenti in scatola destinati genericamente alle altre fasce di popolazione);
- e) degli interventi attuabili per ridurre l'esposizione (per esempio attraverso campagne di informazione finalizzate a limitare il consumo di alcuni alimenti da parte di gruppi di popolazione identificati come vulnerabili bambini, anziani, immunodepressi, donne in gravidanza ecc...);
- f) della modalità di esposizione che condiziona la tossicità dei diversi elementi (come le sostanze tossiche entrano a contatto con l'organismo)

Espressione dei risultati

In aderenza al Regolamento UE 1881/2006 e s.m.i. – Allegato Parte 3 - Metalli - i tenori riscontrati sono riferiti a mg/Kg di peso fresco. Per il dettaglio degli esiti analitici si rimanda alla Tabella 4.

Per i campioni prelevati nella campagna autunnale 2016 è stato effettuata una comparazione tra valori riscontrati nei terreni da UNIBO e livelli di EPT nei vegetali campionati da USL Toscana Nord Ovest (Tabella 5)

Esiti analitici

<u>Arsenico</u>

L'arsenico è un elemento ubiquitario: è presente in aria, acqua, suolo, sedimenti ed organismi [Cullen e Reimer, 1989].

I livelli rinvenuti sulla superficie terrestre variano da 0.1 to 55 mg/kg (Matschullat, 2000).

È ormai generalmente accettato che il trasferimento di As dal suolo alla pianta rappresenta una delle principali vie di esposizione dell'uomo al metalloide. L'accumulo è basso per molte specie, probabilmente perché vi è limitato assorbimento delle radici e limitata traslocazione di arsenico dalle radici ai germogli;, fitotossicità nei tessuti già a basse concentrazioni, bassa biodisponibilità di arsenico nel suolo [Wang et al., 2002].

Le principali fonti di assunzione dell'arsenico inorganico sono i cereali e i prodotti a base di cereali, gli alimenti per usi dietetici speciali (ad esempio le alghe), l'acqua in bottiglia, il caffè e la birra, il riso e i prodotti a base di riso e le verdure. Nel caso dell'accumulo di As nelle piante a rappresentare maggior rischio alimentare sono le radici e soprattutto le foglie, in cui il metallo è fortemente concentrato, in minor parte invece i frutti dove l'arsenico viene difficilmente traslocato.

Anche la tossicità dell'As varia a seconda dello stato di ossidazione (l'As 3 è più tossico dell'As 5); la tossicità, inoltre, cambia a seconda delle molecole con cui è legato: è meno pericoloso quando legato a molecole organiche, rispetto a quelle inorganiche. Dal punto di vista analitico quindi sarebbe necessario discriminare lo stato di ossidazione e la specie chimica (speciazione: determinare come è fatto esattamente il metallo nella matrice alimentare che assumiamo).

I bambini al di sotto dei tre anni di età sono molto sensibili all'As inorganico. Grandi consumatori di riso, come alcuni gruppi etnici e forti consumatori di prodotti a base di alghe possono superare la loro dose settimanale tollerabile di As inorganico(Tolerable weekly intake). Le evidenze a disposizione non indicano differenze di esposizione con la dieta tra vegetariani ed il resto della popolazione, a meno che non vengano consumate grandi quantità di prodotti a base di alghe.

EFSA ha condotto un monitoraggio che ha coinvolto 15 paesi in Europa: sono stati analizzati circa 100.000 campioni di alimenti; dalle indagini effettuate risulta che l'esposizione all'As variano da 0,13 a 0,56 μ g/kg di peso corporeo per il consumatore medio e tra 0.37 e 1.22 μ g/kg peso corporeo (95° percentile).

Per EFSA non vi sono dati scientifici sufficienti per determinare la TDI (tolerable daily intake – dose giornaliera tollerabile).

Su 49 campioni analizzati un solo campione (2,04% matrice cime di rapa – P12) presenta un livello di As superiore al livello massimo stabilito dalla legislazione comunitaria per la matrice cialde di riso (Reg UE 1006/2015). Tutti gli altri campioni presentano concentrazioni più basse.

Nel caso del campione in esame, i livelli di As nel terreno eccedono i valori di riferimento per CSC del D.L.vo 152/2006.

Tallio

L'assorbimento di Tl da suoli contaminati nel cavolo può essere molto elevato e senza alcun effetto negativo sulla crescita delle piante (*Uptake of thallium from artificially contamines soils by kale*, J.Pavlickova et Al. PLANT SOIL ENVIRON., *52*, 2006 (12): 544–549).

Sappiamo dalla letteratura che la famiglia delle brassicacee rappresenta la matrice vegetale che più di altre è in grado di assorbirlo. Il processo di trasferimento suolo - pianta del Tallio fa capo ad un processo di assorbimento simile a quello umano: questo metallo è capace di penetrare nelle cellule "scambiandosi" con il Potassio.

Ulteriori studi hanno illustrato che le specie vegetali hanno una diversa capacità di traslocare i metalli pesanti dalle radici alle foglie, ai semi e ai frutti.

Viene quindi utilizzato il <u>fattore di traslocazione</u> (<u>TF</u>) determinato dal rapporto tra la concentrazione di metalli nelle foglie e la concentrazione di metalli nelle radici (esprime il grado di mobilità dei metalli pesanti nelle varie specie vegetali); sulla base di tale fattore si hanno due gruppi di vegetali: organismi che mostrano una spiccata capacità di trattenere i metalli nelle radici ed altri che trasferiscono gran parte del contaminante al resto della pianta.

Il pomodoro tende ad accumulare il Tl nel fusto con minima concentrazione nel frutto (come pure fagioli, cipolla e piselli); al contrario le Brassicace e la patata tendono ad accumularlo ovunque (*Thallium levels and bioaccumulation in environmental samples of northern Chile: human health risks, J. Chil. Chem. Soc., 54, N°4 2009 pags 464-469*).

Studi scientifici dimostrano che il fattore di traslocazione non è intrinseco della pianta, ma viene influenzato dal Ph del suolo: in particolare le colture più suscettibili di assorbimento sono quelle coltivate in terreni con Ph basso che renderebbe il metallo più solubile. Le verdure coltivate in giardino/campo hanno un assorbimento di tallio inferiore a piante coltivate in vaso a causa di una densità radicale inferiore.

Verdure che accumulano tallio (brassicacee) in terreni con una concentrazione dello stesso < 700 ppb non sono considerate porre alcun rischio per la salute.

Da ricordare che la bollitura del vegetale riduce la sua concentrazione.

Per quanto attiene il valore di riferimento per la concentrazione de Tallio nelle matrici vegetali si fa riferimento allo studio "Uptake of thallium by vegetables: its significance for human health, phytoremedation and phytomining" (Cher La Coste et al - Journal of Plant Nutrition, 24 (8) 1205 – 1215), che, nel confermare la diversa capacità delle specie vegetali di accumulare tale metallo pesante, segnala i valori di riferimento proposti in Germania (0,5 mg/Kg [f.m. – fresh mass]).

Sul totale dei campioni prelevati 6 (12,24%) presentano livelli di Tl compresi tra 0,928 e 2,565 mg/Kg; per quattro di questi campioni [siti P19, P23, P26 e P 27] effettuati in doppio con UNIBO, al valore significativo di Tl nei vegetali non corrisponde nel terreno un superamento del limite previsto dal D.L.vo 152/06. (vedi tab 1 di pagina 20 della relazione Università di Bologna 10 marzo 2017)

Ulteriori quattro campioni (8,16%) presentano concentrazioni pari a 0,329 e 0,46 mg/Kg. Per questi ultimi, in un sito [P6] si segnalano valori di Tl superiori ai limiti di rilevabilità ma inferiori ai valori limite del D.L.vo 152/06, in altri due siti [P13 e P15] non sono stati riscontrate tracce significative di questo metallo nel terreno.

Le sole specie vegetali interessate sono il cavolo, il cavolo verza ed il cavolo nero (12,24% dei campioni con livelli di Tl superiori ai valori di riferimento proposti in Germania).

<u>Piombo</u>

Il Piombo allo stato nativo è piuttosto raro, la maggior parte della sua presenza ambientale è determinata da attività umane.

Recentemente la dose considerata critica è stata notevolmente abbassata, i suoi composti sono tossici e vengono assorbiti essenzialmente per inalazione ed ingestione. La tossicità del Piombo deriva dalla sua

capacità di sostituirsi al Calcio in molti processi cellulari.

Questo metallo ha effetti tossici per via alimentare soprattutto nei confronti dei bambini, il cui apparato gastroenterico è particolarmente recettivo nei confronti dei nutrienti con i quali entrano anche le sostanze tossiche.

I vegetali non risultano essere dei reali accumulatori di questo elemento, e le maggiori concentrazioni nella pianta si riscontrano nelle radici, nelle foglie e in minor parte nei germogli.

Il gruppo di esperti dell'EFSA ha ritenuto che i cereali, gli ortaggi e l'acqua potabile siano gli alimenti che contribuiscono in maggior misura all'esposizione alimentare al piombo.

Secondo ATSDR (Agency of Toxic Substances & Disease Registry) i suoli non contaminati presentano livelli di Pb di circa 50 ppm, ma in aree urbane contaminate i livelli possono superare 200 ppm.

Per quanto attiene questo contaminante si fa riferimento alle normative comunitarie (Reg. 1881/2006 e s.m.i.) per i vegetali ed al D.L.vo 152/06 per il terreno.

Sul totale dei campioni prelevati 13 (26,53%) presentano concentrazioni di Pb superiori ai valori massimi comunitari; di questi 5 (10,20%) sono rappresentati da erbe aromatiche (salvia e rosmarino), 1 (2,04%) da bieta, 2 (4,98%) da finocchi.

La geolocalizzazione di queste matrici, potrebbe suggerire la correlazione con la presenza in passato di un campo di tiro al volo (oggetto di sequestro giudiziario nel 2012), da cui discende un fosso chiamato Fosso di Fondo.

Per 7 di questi campioni non sono disponibili i valori dei terreni; per gli altri 6 campioni il superamento dei livelli stabiliti per gli alimenti può essere correlato al superamento del limite del D.L.vo 152/06 nei terreni (Tabella 1)

Mercurio

Per quanto attiene questo contaminante si fa riferimento (per analogia) alle normative comunitarie (Reg. 1881/2006 e s.m.i.).

La caratteristica che risalta di più in questo elemento è il fatto che, pur essendo un metallo, si trovi allo stato liquido a temperatura ambiente. Per questa caratteristica rappresenta fonte di contaminazione per tutte le matrici ambientali.

Il comparto ambientale maggiormente inquinato da questo metallo è sicuramente l'acqua. Soltanto nel mare adriatico vengono sversate ogni anno 41 tonnellate di mercurio. L'acqua veicola il mercurio negli alimenti vegetali per assorbimento.

La popolazione generale è esposta al mercurio principalmente attraverso l'alimentazione, in particolare attraverso il consumo di pesce e prodotti ittici. Il tenore di mercurio metilato nei pesci varia con la posizione delle specie nella catena alimentare (maggiore nelle specie predatrici che sono ai vertici della catena alimentare).

Come per l'As, la tossicità di questo metallo varia al variare della specie chimica: in questo caso la forma più pericolosa è la forma organica che rappresenta il 60 – 90% del mercurio presente negli alimenti ittici.

Da precisare che negli 11 campioni dell'autunno 2015 non è stata effettuata la ricerca di Hg. Sui restanti campioni le concentrazioni sono significativamente inferiori ai valori limite. Anche nei campioni di terreno effettuati da UNIBO nell'autunno del 2016 non sono stati riscontrati superamenti delle CSC.

Cadmio

La sua dispersione in ambiente è dovuta quasi esclusivamente da attività industriale di estrazione e lavorazione dei metalli. Ha effetti tossici molto gravi non solo per inalazione (esposizione professionale), ma anche a livello alimentare o attraverso il fumo di sigaretta.

In base ad alcuni studi il Cd si sostituisce allo Zn in alcuni processi metabolici, al punto che molto spesso le intossicazioni da Cd sono confuse con carenze di Zn. Sembra addirittura che le due sostanze siano vicarianti all'interno dell'organismo ed un alto apporto di Zn nella dieta potrebbe fungere da fattore protettivo.

La sua pericolosità per la salute umana è dovuto all'alto grado di assorbimento da parte delle piante e alla

contestuale ridotta fitotossicità. Questo si traduce nella possibilità di ritrovare alte concentrazioni di cadmio nei prodotti vegetali senza che quest'ultimi ne risentano. Le maggiori specie alimentari di origine vegetale che possono rappresentare un rischio per la salute umana sono i cereali, le patate e le verdure a foglia, che sono a stretto contatto col terreno. Per quanto attiene questo contaminante si fa riferimento alle normative comunitarie (Reg. 1881/2006 e s.m.i.). In tutti i campioni analizzati le concentrazioni sono inferiori ai valori limite. Solo in due campioni di terreno prelevati nell'autunno del 2016 [sito P6] si ha superamento delle CSC cui non corrisponde un accumulo del metallo nelle specie orticole.

Bario

Il rapporto "Assessment of the tolerable daily intake for barium" (Scientific Committee on Health and Environmental Risks – 22 marzo 2012 – European Commission), partendo dallo studio NTP (National Toxicology Program - 1994) effettuato su ratti e topi alimentati, rispettivamente, per 15 giorni, 13 settimane e 2 anni con acqua da bere contenente cloruro di Ba, stabilisce per l'uomo, una TDI (Tolerable daily intake - Dose tollerabile giornaliera, una stima della quantità di un contaminante nel cibo o nell'acqua potabile che può essere ingerita giornalmente da un uomo, in base al suo peso, per tutta la vita senza causare effetti avversi riconoscibili secondo lo stato attuale delle conoscenze) di 0,2 mg/Kg bw/day. In tale rapporto viene altresì citato che EPA non considera il Ba un elemento in grado di determinare patologie tumorali nell'uomo.

Nel documento "Barium in drinking water" – WHO Guidelines for Drinking water quality, viene riportato lo studio di Lanciotti ed al (1992) che segnala nell'acqua potabile in Toscana livelli di Ba variabili da 700 a 1160 μ g/L. Nello stesso documento viene indicato una TDI 0,75 mg/Kg/giorno e, sulla base degli studi disponibili viene fissato come valore guida per il Ba nell'acqua da bere 0,7 mg/L. Si segnala che il valore guida fissato da EPA è 2 mg/L.

Il Documento "Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health" – 2013 riferisce in merito al fatto che il Ba è ubiquitario e può raggiungere concentrazioni nel suolo variabili da 15 a 3000 mg/Kg (ATSDR – 1992); vicino a depositi di barite la concentrazione può arrivare a 37.000 mg/Kg.

Le linee guida canadesi stabiliscono per il Ba i seguenti valori guida (terreni):
□ uso agricolo 750 mg/Kg
□ uso residenziale/verde pubblico 500 mg/Kg
□ uso industriale 2000 mg/Kg
□ uso commerciale 2000 mg/Kg

OSHA ha fissato come valore guida nell'aria 0,5 mg di composti solubili del bario per m³ in ambienti di lavoro/turno di 8 ore lavorative/40 ore lavorative alla settimana.

La normativa comunitaria ed italiana non fissano tenori massimi per il Ba né nei suoli, né negli alimenti, né nell'acqua.

Gli studi disponibili sugli alimenti evidenziano che tale elemento tende ad accumularsi nelle parti dei vegetali che raramente sono mangiate dall'uomo; nelle noci brasiliane sono segnalati valori compresi tra 1500 e 3000 mg/Kg. I pomodori ed i semi di soia tendono ad accumulare il Ba con un fattore di bioconcentrazione (rapporto tra la concentrazione del metallo nelle radici della pianta e la concentrazione dello stesso nel terreno; questo parametro è un indice del potenziale assorbimento del metallo dal suolo alla pianta) che varia da 2 a 20 (Robinson ed al – 1950).

Nello studio "Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables" – 2014, sono stati effettuati 1024 campioni di prodotti vegetali, evidenziando un tendenza all'accumulo nel seguente ordine decrescente: foglie, erbe aromatiche, radici e frutti, quindi con una maggiore concentrazione di Ba nelle foglie (valore minimo 0,37 mg/Kg – valore massimo 22 mg/Kg – peso fresco) ed in ogni caso con una maggiore concentrazione di tale elemento (in tutti i prodotti vegetali) rispetto al Pb e al Cd.

Anche questo studio evidenzia che non sono disponibili tenori massimi basati sull'analisi del rischio né valori guida per il Ba nei prodotti vegetali.

Da segnalare che negli 11 campioni dell'autunno 2015 non è stata effettuata la ricerca di Ba.

Prendendo come riferimento la TDI definita da WHO, in nessun campione si rilevano concentrazioni significative di tale EPT.

Prendendo invece come riferimento il rapporto "Assessment of the tolerable daily intake for barium" (Scientific Committee on Health and Environmental Risks – 22 marzo 2012 – European Commission, si registrano 4 campioni (8,16%) con significative concentrazioni di Ba, comprese tra 15,4 e 21,9 mg/Kg [siti P8, P12, P13 e P19]. Qualora gli alimenti in questione costituissero una parte predominante della dieta giornaliera di potrebbero configurare potenziali situazioni di rischio di esposizione a tale metallo.

Tutti i campioni sono, anche in questo caso, riferiti a Brassicacee (cavolo e cime di rapa).

Se si compara i valori riscontrati nei terreni con quelli dei vegetali non vi è sempre una diretta correlazione tra le concentrazioni del suolo e quelle delle parti edibili (Tabella 2)

Nichel

Sali di nichel ingeriti per via orale possono avere effetti negativi sui reni, milza, polmoni e sul sistema mieloide, negli animali da esperimento.

Il nichel nell'uomo può determinare dermatite allergica da contatto.

Per quanto attiene la sua tossicità, non vi sono pareri concordi nella Comunità scientifica in quanto il nichel è cofattore di alcuni enzimi, quindi è ritenuto elemento essenziale per l'organismo umano.

L'assunzione media con la dieta è di circa 150 µg/giorno, ma può raggiungere 900 µg/giorno a seguito di consumo di alimenti con alto contenuto di questo metallo. Da considerare anche l'introduzione con l'acqua potabile e la cessione agli alimenti da parte degli utensili da cucina.

L'assunzione da 150 a 900 μ g/giorno è una dose da 500 a 90 più bassa di quelle che potrebbe provocare effetti avversi nei ratti.

Le maggiori concentrazioni di nichel sono segnalate nel cacao (8,2 – 12 mg/Kg), nei semi di soia, nella farina di avena, nocciole e mandorle.

E' dimostrato che i livelli di nichel nell'acqua di rubinetto aumentano considerevolmente dopo una stagnazione di almeno 8 ore (o per tutta la notte).

Il Ni è stato determinato solo nei 25 campioni effettuati nel mese di novembre 2016.

I valori riscontrati nei vegetali campionati non costituiscono fattore di esposizione a livelli superiori di quelli considerati come media di assunzione giornaliera.

Cromo

Il Cr è ubiquitario : si trova sia nell'acqua che nel suolo. La Direttiva 2002/46 ne consente l'utilizzo (cloruro di Cr III e solfato di Cr III) nella preparazione di integratori alimentari.

Il Cr può trovarsi in natura a diversi stadi di ossidazione: quello esavalente è cancerogeno. Sul Cr³ la Comunità Scientifica è divisa: alcuni sostengono che abbia effetti tossici, altri sostengono che sia uno degli oligoelementi essenziali per la sopravvivenza umana perché interviene nel metabolismo dei glucidi.

Rappresentano un rilevante fattore di rischio le acque di irrigazione ricche di Cr che vengono usate per le colture vegetali, anche se raramente queste assorbono cromo in quantità da risultare potenzialmente

pericolose.

Gli alimenti rappresentano la maggiore fonte di assunzione del cromo, che viene assorbito velocemente nel tratto gastrointestinale e legato ai tessuti biologici.

Secondo il gruppo di esperti sulle vitamine ed i minerali dell'UK un'assunzione giornaliera di circa 0,15 mg/Kg di peso corporeo (circa 10 mg/persona) non dovrebbe determinare effetti negativi sulla salute.

Il Cr è stato determinato solo nei 25 campioni effettuati nel mese di novembre 2016.

I valori riscontrati nei vegetali campionati non evidenziano apporti di Cr con la dieta giornaliera tali da poter costituire pericolo per la salute.

<u>Manganese</u>

Gli alimenti rappresentano la fonte più importante di Mn. Le concentrazioni variano considerevolmente, ma in genere sono al di sotto di 5 mg/Kg. Il grano, il riso e le noccioline possono avere livelli fra 10 e 30 mg/Kg. La frutta può presentare concentrazioni fino a 10,38 mg/Kg, i vegetali ed i prodotti di origine vegetale fino a 6,64 mg/Kg [WHO, 1981].

Grano, nocciole, verdure a foglia verde e tè ne sono particolarmente ricchi, mentre spinaci, cavoli e patate dolci ne inibiscono l'assorbimento.

L'apporto con la dieta negli adulti varia da 0.9 to 7 mg (Schlettwein-Gsell and Mommsen-Straub, 1973), da 2 a 9 (WHO, 1981) e da 1,2 a 9,4 mg al giorno (Ellen et al, 1990). □ Nei vegetariani il quantitativo assunto giornalmente è superiore in quanto le concentrazioni più elevate di questo metallo si trovano negli alimenti di origine vegetale.

Il "Food and Nutrition Board of the Institute of Medicine" (IOM, 2002) ha stabilito un livello giornaliero tollerabile di 11 mg/giorno, sulla base di una recente revisione (Greger, 1999; IOM, 2002) che ha accertato una assunzione media, per gli adulti che mangiano diete tipicamente occidentali e per vegetariani, variabile da 0,7 a 10,9 mg di manganese al giorno.

Non sono disponibili studi che possano fornire indicazioni su livelli tossici di manganese con la dieta; in virtù di un controllo omeostatico che gli esseri umani hanno nei confronti del Mn, questo metallo non è considerato molto tossico se assunto con la dieta. (Manganese in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality - WHO/SDE/WSH/03.04/104/Rev/1 – 2011)

Il Mn è stato determinato solo nei 25 campioni effettuati nel mese di novembre 2016. In 3 dei 25 campioni esaminati il Mn supera il valore di 11 mg/Kg; ne deriva che se un adulto assumesse tutti i giorni 1 Kg dell'alimento in questione (cavolo e cime di rapa) introdurrebbe nel proprio organismo quantitativi di Mn superiori a quelli normalmente considerati come livelli medi di assunzione nella popolazione.

Come nel caso del Ba, non vi è evidenza di una diretta correlazione tra livelli riscontrati nei terreni e concentrazioni nei vegetali. (Tabella 3)

Conclusioni

Allo stato attuale delle conoscenze non vi sono evidenze di presenza di EPT (As, Cd, Pb, Tl, Ba, Cr, Mn, Ni) nelle aree esaminate in concentrazioni tali da richiedere, a nostro avviso, l'adozione di un provvedimento drastico quale il totale divieto di utilizzo dei suoli per la coltivazione.

Si evidenzia comunque, per alcuni metalli (Tl, Ba e, in misura minore Mn) la tendenza all'accumulo in alcune specie vegetali (Brassicacee) che indirizza verso una limitazione della loro presenza nella dieta, sconsigliandone un uso quotidiano.

La letteratura scientifica mostra pareri discordanti sull'assorbimento di alcuni metalli come il Tallio nei vegetali quali i tuberi (*Thallium levels and bioaccumulation in environmental samples of northern Chile: human health risks, J. Chil. Chem. Soc., 54,* N°4 2009 pags 464-469), mentre troviamo una concordanza totale e confermata della spiccata capacità della famiglia di Brassicacee di accumulare metalli pesanti; tra questi in particolare Tallio e Bario [*Uptake of thallium from artificially contaminated soils by kale,* J.Pavlìckovà et Al., Plant soil environ,

52, 2006 (12): 544-549; Dietary intake of Barium, Bismuth, Chromium, Lithium and Stantium in a spanish population, Dallas Gonzales-Weller et Al. 2013, Food and Chemical Toxicology Vol.62 Dec.2013, pages 856-868].

Che le Brassicacee accumulino più di altri vegetali EPT, specie Tallio e Bario, è confermato anche dagli esiti dei campionamenti effettuati da ASL e UNIBO.

E' importante sottolineare:

- a) la concordanza emersa fra i dati USL e quelli prodotti dall'Università
- b) gli studi condotti sulla contaminazione dei suoli dimostrano che in diversi siti campionati [siti P19, P23, P26 e P 27] le concentrazioni riscontrate nei vegetali non sembrerebbero riconducili ad assorbimento dal terreno dal momento che ne contiene quantitativi poco significativi.

Si può quindi presuppore che, per questi siti, la fonte più significativa di apporto del metallo possa essere da acqua con livelli superiori ai valori EPA.

Analizzando quindi allo stato attuale le risorse idriche locali contenenti EPT (solo in alcuni pozzi sono stati riscontrati livelli di Tl pari a 0,7 µg), l'unica fonte probabile potrebbe essere un uso improprio delle acque del torrente del Baccatoio come fonte di irrigazione degli orti.

E' indispensabile, pertanto, mantenere l'Ordinanza n. 71 del 16 novembre 2015 sul divieto ad uso irriguo delle acque del Torrente Baccatoio.

Per quanto attiene le acque ad uso potabile, si ribadisce la necessità di completare il censimento di tutti i pozzi ad uso privato, in quanto alcuni campionamenti effettuati da USL nella campagna estiva del 2016 evidenziano valori di $Tl > 0.5 \mu g/L$ ed è quindi quanto mai necessario acquisire evidenze sull'isolamento della falda superficiale di subalveo nei pozzi profondi.

E' inoltre opportuno che i prodotti vegetali di origine locale (orti familiari) introdotti con la dieta siano costituiti da una gamma diversificata di specie che non includa esclusivamente brassicacee, per le quali è dimostrata la tendenza all'accumulo di EPT.

Per quanto attiene eventuali aziende agricole, si ricorda che, come previsto dal Reg. CE 852/2004 è obbligo dell'OSA (Operatore del Settore alimentare) dimostrare, in autocontrollo, la sicurezza dei prodotti alimentari commercializzati in particolare per il parametro Pb, che si ritrova a livelli superiori ai limiti comunitari anche in specie vegetali diverse dalle brassicacee.

Si conferma la prosecuzione dell'attività di monitoraggio della concentrazione di EPT nei vegetali nella prossima stagione primaverile, in collaborazione con UNIBO.

Tabella 1
Confronto tra livelli di Ph nel terreno (suolo rizosferico – campionamenti UNIBO novembre 2016) e concentrazioni di Ph nei vegetali (campioni USL novembre 2016)

N. verbale	Anno prelievo	Matrice	ID Coltura	Pb suolo	Pb mg/Kg
30/2016	2016	Cavolo	P1	169	0,107
34/2016	2016	Cime di rapa	P12	504	7,083
35/2016	2016	Cavolo	P13	67,7	0,232
36/2016	2016	Finocchio	P13	67,7	0,511
37/2016	2016	Cavolo	P14	67,2	0,134
38/2016	2016	Finocchio	P14	67,2	0,071
39/2016	2016	Cavolo	P15	68,4	0,077
40/2016	2016	Finocchio	P15	68,4	0,17
41/2016	2016	Cime di rapa	P16	73,2	0,117
42/2016	2016	Cavolo	P18	206	0,23
43/2016	2016	Cavolo	P19	78	0,048
44/2016	2016	Cime di rapa	P21	110	0,292
45/2016	2016	Cavolo	P22	104	0,172
46/2016	2016	Cavolo	P23	224	0,086
47/2016	2016	Cavolo	P24	638	0,15
48/2016	2016	Cavolo	P25	206	0,047
49/2016	2016	Cavolo	P26	169	0,096
50/2016	2016	Cavolo	P27	78,7	0,391
51/2016	2016	Rape	P31	86,1	0,264
52/2016	2016	Rape	P32	77,9	0,129
53/2016	2016	Rape	P34	82,9	0,148
54/2016	2016	Rape	P35	87	0,081
31/2016	2016	Cavolo	P6	260	0,026
32/2016	2016	Bietola	P6	260	0,091
33/2016	2016	Cime di rapa	P8	194	0,689

Tabella 2
Confronto tra livelli di Ba nel terreno (suolo rizosferico – campionamenti UNIBO novembre 2016) e concentrazioni di Ba nei vegetali (campioni USL novembre 2016)

N. verbale	Anno prelievo	Matrice	ID Coltura	Ba suolo mg/Kg-1 ss	Ba mg/Kg
53/2016	2016	Rape	P34	219	9,1
41/2016	2016	Cime di rapa	P16	257	4,8
37/2016	2016	Cavolo	P14	321	9,5
38/2016	2016	Finocchio	P14	321	1,2
35/2016	2016	Cavolo	P13	426	15,4
36/2016	2016	Finocchio	P13	426	7,3
51/2016	2016	Rape	P31	434	4,2
39/2016	2016	Cavolo	P15	459	8,5
40/2016	2016	Finocchio	P15	459	1,8
43/2016	2016	Cavolo	P19	568	21,9
30/2016	2016	Cavolo	P1	627	5,5
49/2016	2016	Cavolo	P26	808	10,1
44/2016	2016	Cime di rapa	P21	809	12
52/2016	2016	Rape	P32	882	9,4
42/2016	2016	Cavolo	P18	916	11,2
54/2016	2016	Rape	P35	968	13,9
48/2016	2016	Cavolo	P25	1765	7,4
34/2016	2016	Cime di rapa	P12	1785	20,2
45/2016	2016	Cavolo	P22	1848	13,7
47/2016	2016	Cavolo	P24	2510	12,3
33/2016	2016	Cime di rapa	P8	2547	15,6
46/2016	2016	Cavolo	P23	2568	13,5
31/2016	2016	Cavolo	P6	2577	9,6
32/2016	2016	Bietola	P6	2577	2,8
50/2016	2016	Cavolo	P27	2590	12,7

Tabella 3

Confronto tra livelli di Mn nel terreno (suolo rizosferico – campionamenti UNIBO novembre 2016) e concentrazioni di Ba nei vegetali (campioni USL novembre 2016)

N. verbale	Anno prelievo	Matrice	ID Coltura	Mn suolo	Mn mg/Kg
54/2016	2016	Rape	P35	164	3,718
43/2016	2016	Cavolo	P19	303	5,854
49/2016	2016	Cavolo	P26	328	2,784
41/2016	2016	Cime di rapa	P16	340	2,161
51/2016	2016	Rape	P31	361	7,572
52/2016	2016	Rape	P32	372	3,322
44/2016	2016	Cime di rapa	P21	395	5,135
53/2016	2016	Rape	P34	401	4,591
45/2016	2016	Cavolo	P22	407	6,669
50/2016	2016	Cavolo	P27	424	4,38
48/2016	2016	Cavolo	P25	433	4,973
35/2016	2016	Cavolo	P13	434	6,701
36/2016	2016	Finocchio	P13	434	4,346
42/2016	2016	Cavolo	P18	483	5,573
30/2016	2016	Cavolo	P1	578	4,42
46/2016	2016	Cavolo	P23	584	8,171
37/2016	2016	Cavolo	P14	587	25,915
38/2016	2016	Finocchio	P14	587	2,813
39/2016	2016	Cavolo	P15	602	46,965
40/2016	2016	Finocchio	P15	602	7.073
47/2016	2016	Cavolo	P24	676	6,855
33/2016	2016	Cime di rapa	P8	815	8,551
31/2016	2016	Cavolo	P6	1222	5,387
32/2016	2016	Bietola	P6	1222	2,95
34/2016	2016	Cime di rapa	P12	4262	11,425

Azienda USL Toscana nord oves

Tabella 4 Esiti analitici: campagne di campionamento estate 2015 – estate 2016 – autunno 2016)

														Serviti	o sanıra	rio della	Ioscana																
Mn mg/Kg																									4,42	5,387	2,95	8,551	11,425	6,701	4,346	25,915	2,813
Cr mg/Kg																									0,189	0,059	0,031	0,58	1,159	2,802	3,938	0,959	0,093
Ni mg/Kg																									0,103	0,005	< 0,005	0,329	0,546	1,516	1,878	0,502	< 0,005
Ba mg/Kg												<1	<1	<1	<1	1,2	<1	<1	1,2	1,2	7,2	<1	<1	<1	5,5	9,6	2,8	15,6	20,2	15,4	7,3	9,5	1,2
Cd mg/Kg	0,009	< 0,005	0,027	0,021	0,029	0,056	0,018	0,045	0,057	0,013	0,027	0,066	0,026	0,014	0,015	0,005	0,062	0,066	0,035	0,036	0,024	0,011	0,059	0,018	0,025	0,025	0,026	0,039	0,068	0,027	0,014	0,033	0,012
Hg mg/Kg												< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025	< 0,025
Pb mg/Kg	1,185	< 0,005	0,346	0,35	0,011	0,455	0,201	0,323	0,338	900,0	0,203	< 0,005	< 0,005	< 0,005	< 0,005				< 0,005	< 0,005	0,586	< 0,005	< 0,005	< 0,005	0,107	0,026	0,091	0,689	7,083	0,232	0,511	0,134	0,071
Tl mg/Kg	90,0	< 0,005	8000	69000	90000	2,304	0,014	0,01	2,565	< 0,005	0,045	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	900 ° 0	0,016	< 0,005	< 0,005	< 0,005	0,055	0,385	0,037	0,062	0,026	0,329	0,009	0,152	< 0,005
As mg/Kg	0,092	0,006	0,094	0,096	0,005	0,128	0,075	0,108	0,09	0,005	0,087	< 0,005	0,011	0,007	0,025	0,047	0,021	< 0,005	< 0,005	0,048	0,216	< 0,005	< 0,005	0,017	0,032	0,025	0,026	0,111	0,542	0,085	0,135	0,03	0,018
ID Coltura				P3	P3																				P1	P6	P6	P8	P12	P13	P13	P14	P14
Matrice	Rosmarino	Mais	Rosmarino		Pomodoro	Cavolo nero	Rosmarino	Salvia	Cavolo verza	Pomodoro	Cavolo	Pomodoro	Pomodoro	Pomodoro	Pomodoro	Zucchine	Pomodoro	Pomodoro	Zucchine	Melanzane	Bieta	Pomodoro	Pomodoro	Pomodoro	Cavolo	Cavolo	Bietola		Cime di rapa	Cavolo	Finocchio	Cavolo	Finocchio
Anno prelievo	2015	2015	2015	2015	2015	2015		2015		2015	2015	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016		2016	2016	2016	2016		2016
N. verbale	010	800	600	001	002	003	012	011	004	900	200	001	002	003	900	200	600	011	013	015	017	019	020	021	30/2016	31/2016	32/2016	33/2016	34/2016	35/2016	36/2016	37/2016	38/2016

1	Anno											Mn
rbale	N. verbale prelievo	Matrice	ID Coltura	As mg/Kg	Tl mg/Kg	Pb mg/Kg	Hg mg/Kg	Cd mg/Kg	Ba mg/Kg	Ni mg/Kg	Cr mg/Kg	mg/Kg
39/2016	2016	Cavolo	P15	0,022	0,46	0,077	< 0,025	80,0	8,5	0,713	0,862	46,965
0/2016	2016	Finocchio	P15	0,019	0,01	0,17	< 0,025	0,012	1,8	0,029	0,065	7.073
41/2016	2016	Cime di rapa	P16	0,015	600,0	0,117	< 0,025	750,0	4,8	0,1	0,273	2,161
42/2016	2016	Cavolo	P18	880 ʻ 0	0,213	0,23	< 0,025	0,02	11,2	0,713	1,47	5,573
43/2016	2016	Cavolo	P19	800 ʻ 0	1,089	0,048	< 0,025	0,021	21,9	< 0,005	0,091	5,854
44/2016	2016	Cime di rapa	P21	880 ʻ 0	< 0,005	0,292	< 0,025	0,064	12	0,358	0,818	5,135
45/2016	2016	Cavolo	P22	0,016	0,118	0,172	< 0,025	0,027	13,7	0,272	0,576	699,9
46/2016	2016	Cavolo	P23	0,03	1,106	980,0	< 0,025	0,045	13,5	990,0	0,14	8,171
47/2016	2016	Cavolo	P24	0,053	0,38	0,15	< 0,025	890 ʻ 0	12,3	0,142	0,193	6,855
48/2016	2016	Cavolo	P25	0,015	70,07	0,047	< 0,025	0,016	7,4	0,194	0,4	4,973
49/2016	2016	Cavolo	P26	0,035	0,928	960,0	< 0,025	0,037	10,1	0,494	0,912	2,784
50/2016	2016	Cavolo	P27	0,042	1,294	0,391	< 0,025	0,016	12,7	0,312	0,59	4,38
51/2016	2016	Rape	P31	9£0,0	0,007	0,264	< 0,025	0,051	4,2	0,086	0,236	7,572
52/2016	2016	Rape	P32	0,062	< 0,005	0,129	< 0,025	0,055	9,4	0,021	0,143	3,322
53/2016	2016	Rape	P34	0,02	0,022	0,148	< 0,025	0,065	9,1	0,038	0,227	4,591
54/2016	2016	Rape	P35	0,019	< 0,005	0,081	< 0,025	0,057	13,9	< 0,005	0,075	3,718

Azienda USL Toscana nord ovest

 Tabella 5

 Confronto tra linelli di EPT nel terreno (snolo rizzosferico – campionamenti UNIBO novembre 2016) e concentrazioni di EPT nei regetali (campioni USL novembre 2016)

N. verbale	Anno prelievo	Matrice	ID Coltura	As suolo	Arsenico mg/Kg	Tl suolo	Tallio mg/Kg	Pb suolo	Pb mg/Kg
30/2016	2016	Cavolo	P1	103,4	0,032	< 0,21	0,055	169	0,107
34/2016	2016	Cime di rapa	P12	45,1	0,542	< 0,21	0,026	504	7,083
35/2016	2016	Cavolo	P13	20,1	0,085	< 0,21	0,329	67,7	0,232
36/2016	2016	Finocchio	P13	20,1	0,135	< 0,21	0,009	67,7	0,511
37/2016	2016	Cavolo	P14	17,8	0,03	< 0,21	0,152	67,2	0,134
38/2016	2016	Finocchio	P14	17,8	0,018	< 0,21	< 0,005	67,2	0,071
39/2016	2016	Cavolo	P15	18,9	0,022	< 0,21	0,46	68,4	0,077
40/2016	2016	Finocchio	P15	18,9	0,019	< 0,21	0,01	68,4	0,17
41/2016	2016	Cime di rapa	P16	10,7	0,015	< 0,21	0,009	73,2	0,117
42/2016	2016	Cavolo	P18	15,2	0,088	< 0,21	0,213	206	0,23
43/2016	2016	Cavolo	P19	17,2	0,008	< 0,21	1,089	78	0,048
44/2016	2016	Cime di rapa	P21	22,7	0,088	< 0,21	< 0,005	110	0,292
45/2016	2016	Cavolo	P22	29	0,016	< 0,21	0,118	104	0,172
46/2016	2016	Cavolo	P23	43,1	0,03	< 0,21	1,106	224	0,086
47/2016	2016	Cavolo	P24	64,9	0,053	0,686	0,38	638	0,15
48/2016	2016	Cavolo	P25	31,1	0,015	< 0,21	0,07	206	0,047
49/2016	2016	Cavolo	P26	20,9	0,035	< 0,21	0,928	169	0,096
50/2016	2016	Cavolo	P27	20,8	0,042	0,72	1,294	78,7	0,391
001	2015	Salvia	P3	40	0,096	< 0,21	0,069	171	0,35
002	2015	Pomodoro	P3	40	0,005	< 0,21	0,006	171	0,011
51/2016	2016	Rape	P31	18,7	0,036	< 0,21	0,007	86,1	0,264
52/2016	2016	Rape	P32	19,8	0,062	< 0,21	< 0,005	77,9	0,129
53/2016	2016	Rape	P34	14,5	0,02	< 0,21	0,022	82,9	0,148
54/2016	2016	Rape	P35	15,6	0,019	< 0,21	< 0,005	87	0,081
31/2016	2016	Cavolo	P6	54,3	0,025	0,43	0,385	260	0,026
32/2016	2016	Bietola	P6	54,3	0,026	0,43	0,037	260	0,091
33/2016	2016	Cime di rapa	P8	26	0,111	< 0,21	0,062	194	0,689

N. verbale	Anno prelievo	Matrice	ID Coltura	Hg suolo	Hg mg/Kg	Cd suolo	Cd mg/Kg	Ba suolo	Ba mg/Kg
30/2016	2016	Cavolo	P1	0,38	< 0,025	1,533	0,025	627	5,5
34/2016	2016	Cime di rapa	P12	1,86	< 0,025	1,86	0,068	1785	20,2
35/2016	2016	Cavolo	P13	< 0,010	< 0,025	0,387	0,027	426	15,4
36/2016	2016	Finocchio	P13	< 0,010	< 0,025	0,387	0,014	426	7,3
37/2016	2016	Cavolo	P14	< 0,010	< 0,025	0,377	0,033	321	9,5
38/2016	2016	Finocchio	P14	< 0,010	< 0,025	0,377	0,012	321	1,2
39/2016	2016	Cavolo	P15	< 0,010	< 0,025	0,412	0,08	459	8,5
40/2016	2016	Finocchio	P15	< 0,010	< 0,025	0,412	0,012	459	1,8
41/2016	2016	Cime di rapa	P16	< 0,010	< 0,025	0,391	0,037	257	4,8
42/2016	2016	Cavolo	P18	0,124	< 0,025	0,671	0,02	916	11,2
43/2016	2016	Cavolo	P19	< 0,010	< 0,025	0,446	0,021	568	21,9
44/2016	2016	Cime di rapa	P21	0,306	< 0,025	0,306	0,064	808	12
45/2016	2016	Cavolo	P22	0,739	< 0,025	0,799	0,027	1848	13,7
46/2016	2016	Cavolo	P23	0,5	< 0,025	1,062	0,045	2568	13,5
47/2016	2016	Cavolo	P24	0,521	< 0,025	1,67	0,068	2510	12,3
48/2016	2016	Cavolo	P25	0,029	< 0,025	0,79	0,016	1765	7,4
49/2016	2016	Cavolo	P26	0,018	< 0,025	0,75	0,037	808	10,1
50/2016	2016	Cavolo	P27	0,805	< 0,025	0,661	0,016	2590	12,7
51/2016	2016	Rape	P31	< 0,010	< 0,025	0,785	0,051	434	4,2
52/2016	2016	Rape	P32	< 0,010	< 0,025	0,512	0,055	882	9,4
53/2016	2016	Rape	P34	< 0,010	< 0,025	0,656	0,065	219	9,1
54/2016	2016	Rape	P35	< 0,010	< 0,025	0,411	0,057	896	13,9
31/2016	2016	Cavolo	P6	1,159	< 0,025	2,45	0,025	2577	9,6
32/2016	2016	Bietola	P6	1,159	< 0,025	2,45	0,026	2577	2,8
33/2016	2016	Cime di rapa	P8	0,381	< 0,025	1,796	0,039	2547	15,6

N. verbale	Anno prelievo	Matrice	ID Coltura	Ni suolo	Ni mg/Kg	Cr suolo	Cr mg/Kg	Mn suolo	Mn mg/Kg
30/2016	2016	Cavolo	P1	45,9	0,103	64,5	0,189	578	4,42
34/2016	2016	Cime di rapa	P12	25	0,546	54,7	1,159	4262	11,425
35/2016	2016	Cavolo	P13	17,5	1,516	28,8	2,802	434	6,701
36/2016	2016	Finocchio	P13	17,5	1,878	28,8	3,938	434	4,346
37/2016	2016	Cavolo	P14	20,9	0,502	56,9	0,959	587	25,915
38/2016	2016	Finocchio	P14	20,9	< 0,005	56,9	0,093	587	2,813
39/2016	2016	Cavolo	P15	20,4	0,713	39,8	0,862	602	46,965
40/2016	2016	Finocchio	P15	20,4	0,029	39,8	0,065	602	7.073
41/2016	2016	Cime di rapa	P16	18,2	0,1	60,4	0,273	340	2,161
42/2016	2016	Cavolo	P18	21,8	0,713	67,3	1,47	483	5,573
43/2016	2016	Cavolo	P19	16,3	< 0,005	22,4	0,091	303	5,854
44/2016	2016	Cime di rapa	P21	19,2	0,358	27	0,818	395	5,135
45/2016	2016	Cavolo	P22	15,9	0,272	15,9	0,576	407	699'9
46/2016	2016	Cavolo	P23	33,9	0,066	36,1	0,14	584	8,171
47/2016	2016	Cavolo	P24	24,9	0,142	77,5	0,193	929	6,855
48/2016	2016	Cavolo	P25	20,5	0,194	34,6	0,4	433	4,973
49/2016	2016	Cavolo	P26	16,6	0,494	22	0,912	328	2,784
50/2016	2016	Cavolo	P27	23,2	0,312	32,3	0,59	424	4,38
51/2016	2016	Rape	P31	23,4	0,086	45,6	0,236	361	7,572
52/2016	2016	Rape	P32	25,2	0,021	36,8	0,143	372	3,322
53/2016	2016	Rape	P34	34,7	0,038	55,2	0,227	401	4,591
54/2016	2016	Каре	P35	15,2	< 0,005	16,6	0,075	164	3,718
31/2016	2016	Cavolo	P6	36,9	0,005	53	0,059	1222	5,387
32/2016	2016	Bietola	P6	36,9	< 0,005	53	0,031	1222	2,95
33/2016	2016	Cime di rapa	P8	35,3	0,329	51,1	0,58	815	8,551