ACCORDO DI COLLABORAZIONE SCIENTIFICA TRA REGIONE TOSCANA - UNIVERSITÀ DI PISA / DIPARTIMENTO DI SCIENZE DELLA TERRA - COMUNE DI PIETRASANTA

Studio multidisciplinare integrato (geologico-ambientale) nel bacino del Torrente Baccatoio nell'ambito delle "Attività e interventi previsti per il superamento della contaminazione da tallio nell'acqua pubblica del Comune di Pietrasanta e per la realizzazione della bonifica delle aree minerarie "Buca della Vena" e "Monte Arsiccio""

RELAZIONE FINALE

Responsabile:

Prof. Roberto Giannecchini

Pisa, 14/06/2016

Gruppo di lavoro Dipartimento di Scienze della Terra, Università di Pisa

Prof. Riccardo Petrini

Prof. Massimo D'Orazio

Prof. Roberto Giannecchini

Prof. Giancarlo Molli

Dott. Simone Vezzoni

Dr.ssa Martina Perotti

Dr.ssa Ilaria Cinquini

Dr.ssa Lisa Ghezzi

Dott. Cristian Biagioni

Gruppo di lavoro Dipartimento di Biologia, Università di Pisa

Prof. Graziano Di Giuseppe

Dott. Céline Fusi

Gruppo di lavoro Dipartimento di Agraria, Università di Bologna

Prof. Livia Vittori Antisari

Prof. Gilmo Vianello

Gruppo di lavoro Istituto di Geoscienze e Georisorse - CNR Pisa

Dott. Marco Doveri

Dott. Massimo Guidi

Dr.ssa Matia Menichini

Dr.ssa Ilaria Baneschi

Dott. Matteo Lelli

Gruppo di lavoro Dipartimento di Scienze Ambientali, Informatica e Statistica – Università di Venezia

Prof. Barbara Stenni

Indice

Nota introduttiva	pag 1
Sintesi delle campagne di campionamento e delle attività svolte	pag 3
1.1. Le fasi di indagine	pag 3
1.2. Matrici ambientali	pag 4
1.3. Campionamenti e metodi di analisi	pag 10
2. Assetto geologico-idrogeologico del bacino del Torrente Baccatoio	pag 11
2.1 Geologia generale e strutturale	pag 11
2.1.1 Inquadramento geologico regionale	pag 12
2.1.2. Assetto geologico della zona attorno a Valdicastello-Sant'Anna	pag 15
2.1.3. Strutture fragili tardive	pag 23
2.1.4. Bibliografia del paragrafo 2.1	pag 29
2.2. Quadro della circolazione idrica sotterranea nel bacino del	
Torrente Baccatoio	pag 32
2.2.1. Caratteri generali del bacino	pag 32
2.2.2. Assetto idrogeologico del bacino del Torrente Baccatoio	pag 32
2.2.3. Considerazioni sull'idrodinamica del sistema sulla base di dati di portata	
ed isotopici	pag 40
2.2.3.1. Sorgente Molini di Sant'Anna	pag 41
2.2.3.2. I drenaggi minerari Ribasso del Pollone e galleria Sant'Erasmo	pag 52
3. Modello concettuale della contaminazione	pag 64
3.1. La fase acquosa	pag 64
3.2. Modello di distribuzione del ferro in un tratto del Torrente Baccatoio	pag 73
3.3. La fase solida: sedimenti dell'alveo attivo	pag 76
3.4. Le acque interstiziali	pag 82
3.5. Speciazione del tallio in fase acquosa	pag 84

4. I drenaggi minerari: caratterizzazione geochimica e stime quantitative	pag 86
4.1. Ubicazione e contesto geologico	pag 86
4.2. Caratteristiche geochimiche	pag 87
4.3. Stime quantitative del rilascio di EPT dai drenaggi	pag 90
4.3.1. Drenaggio galleria Sant'Erasmo (miniera di M. Arsiccio)	pag 91
4.3.2. Drenaggio galleria di Ribasso (miniera del Pollone)	pag 93
4.3.3. Rilascio totale di EPT dai drenaggi	pag 95
5. Esperimenti di laboratorio	pag 97
5.1. Esperimenti di rimozione del tallio dalle acque	pag 97
5.1.1. Esperimenti di rimozione del tallio dall'acqua del	
Torrente Baccatoio	pag 97
5.1.2. Esperimento di rimozione del tallio dalle acque della sorgente Molini	
di Sant'Anna	pag 102
5.2. Simulazione degli effetti di mescolamento tra acqua del Torrente Baccatoio)
e acqua della sorgente Molini di Sant'Anna	pag 105
5.3. Esperimenti di rimozione di Fe e Mn attraverso processi di precipitazione	
indotti	pag 107
5.3.1. Esperimenti con KMnO ₄	pag 107
5.3.2. Esperimenti con NaOCl	pag 108
5.3.3. Risultati	pag 109
6. Valutazione del grado di contaminazione da EPT, in particolare tallio, del	
sistema suolo-pianta nel bacino del Torrente Baccatoio	pag 111
6.1. Introduzione	pag 111
6.2. Riferimenti normativi relativi alla presenza di EPT nei suoli e nei vegetali	pag 112
6.2.1. Riferimenti normativi e limiti di legge per la concentrazione di EPT	
nei suoli	pag 112
6.2.2. Riferimenti normativi e limiti di legge per la concentrazione di EPT	
nei vegetali	pag 114

	6.3. Il tallio nei suoli e nei vegetali	pag 115
	6.4. Protocollo sperimentale del monitoraggio	pag 116
	6.4.1. Localizzazione dei siti d'indagine e modalità di campionamento	pag 116
	6.4.2. Metodologie analitiche	pag 117
	6.5. Risultati del monitoraggio di siti agricoli a prevalente coltivazione orticola	pag 117
	6.6. Risultati relativi al monitoraggio su siti interessati da discariche di origine	
	mineraria	pag 133
	6.7. Considerazioni sul grado di contaminazione dei suoli e del trasferimento	
	di EPT in colture orticole	pag 142
	6.7.1. Lo stato di fatto nei suoli	pag 142
	6.7.2. Lo stato di fatto nei vegetali	pag 145
	6.7.3. Rilascio di EPT mediante cottura di vegetali: risultati preliminari	pag 150
	6.8. Considerazioni sui risultati conseguiti nei siti interessati da discariche di	
	origine mineraria	pag 151
	6.9. Proposte per la messa in sicurezza dei siti contaminati	pag 153
	6.9.1. Proposta di sperimentazione per la sicurezza alimentare dei prodotti	
	vegetali coltivati	pag 153
	6.9.2. Proposta per la messa in sicurezza delle discariche di origine mineraria	
	mediante opere di rinaturalizzazione	pag 154
7. Ris	sultati analisi biologiche	. pag 156
	7.1. Risultati dei campioni raccolti nella II campagna	pag 156
	7.2. Proposta di bio-risanamento	pag 165
Note	riassuntive	. pag 170

Appendice A: Stazioni di campionamento Appendici B (B1-B6): Dati analitici acque e sedimenti

Nota introduttiva

La presente Relazione Finale raccoglie e conclude l'insieme delle attività svolte dal gruppo di lavoro coordinato dal Dipartimento di Scienze della Terra della Università di Pisa nell'ambito dell'ACCORDO DI COLLABORAZIONE SCIENTIFICA TRA REGIONE TOSCANA - UNIVERSITÀ DI PISA / DIPARTIMENTO DI SCIENZE DELLA TERRA - COMUNE DI PIETRASANTA per uno - Studio multidisciplinare integrato (geologico-ambientale) nel bacino del Torrente Baccatoio nell'ambito delle "Attività e interventi previsti per il superamento della contaminazione da tallio nell'acqua pubblica del Comune di Pietrasanta e per la realizzazione della bonifica delle aree minerarie "Buca della Vena" e "Monte Arsiccio"".

In aggiunta ai dati ottenuti nelle due campagne di campionamento previste dall'accordo, ed i cui risultati analitici sono stati oggetto di validazione da parte di ARPAT, nella presente Relazione questi vengono integrati, laddove ritenuto necessario ai fini di una migliore comprensione dei fenomeni, con dati aggiuntivi e corrispondenti rappresentazioni grafiche. Questo con lo scopo di fornire un quadro quanto più dettagliato, seppure di sintesi, delle caratteristiche delle varie matrici (acqua-suolo-sedimento-vegetali) in termini di distribuzione di elementi potenzialmente tossici (EPT) nel bacino del Torrente Baccatoio, anche ai fini di successivi interventi di messa in sicurezza ambientale e bonifica.

Per questo in aggiunta ai dati analitici di diretta pertinenza per lo studio si riporta una sintesi della nuova cartografia geologica espressamente prodotta nel presente progetto, presupposto essenziale per la caratterizzazione idrogeologica del bacino ed alla base della dispersione della contaminazione.

Si riporta inoltre una caratterizzazione dei campioni di sedimento di alveo prelevati indisturbati in un sito ritenuto di particolare rilievo lungo il corso del Torrente Baccatoio, e delle acque interstiziali contenute nei sedimenti stessi. Obiettivo è definire il ruolo eventuale dei sedimenti di alveo del torrente nel rilascio di contaminanti.

È inoltre riportato un modello riguardante le cinetiche di precipitazione del ferro applicato ad una porzione del torrente; questo ha implicazioni dirette su una serie di EPT il cui destino è strettamente legato al ciclo del ferro. Questo modello rappresenta dunque uno strumento per la previsione della distribuzione di contaminanti nel corso d'acqua in funzione delle dinamiche di portata del torrente e dei drenaggi minerari.

Sono inoltre riportati i risultati, preliminari, di esperimenti di laboratorio mirati a mitigare la dispersione del tallio nell'ecosistema attraverso la fase acquosa, con processi di rimozione attraverso varie metodologie definite sulla base delle indicazioni della letteratura scientifica.

Sono infine riportati i risultati preliminari sulle specie del tallio effettivamente presenti nelle acque relativamente ad alcune stazioni di campionamento, analisi di particolare rilevanza data la diversa solubilità in fase acquosa delle specie del TI(I) e TI(III).

Per quanto riguarda i possibili interventi di messa in sicurezza ed eventuale bonifica sono date indicazioni ritenute utili e forniti alcuni spunti di intervento (anche riprendendo quanto riportato nella Relazione di Medio Periodo).

A conclusione del progetto di ricerca, si ringraziano il Comune di Pietrasanta e la Regione Toscana per avere sostenuto finanziariamente questo studio che si ritiene possa avere sensibilmente migliorato il quadro conoscitivo di una zona particolarmente complessa quale quella del bacino del Torrente Baccatoio.

1. Sintesi delle campagne di campionamento e delle attività svolte

1.1. Le fasi di indagine

Come riportato nelle Relazioni di Breve e Medio Periodo, lo studio ha previsto due campagne di campionamento con la partecipazione di ARPAT, secondo quanto previsto per la validazione dei dati analitici, e di GAIA S.p.A., per l'accesso alle sorgenti captate ad uso idropotabile. Le attività di campagna sono sintetizzate nella Tabella 1.1.

Prima fase di indagine	Seconda fase di indagine				
Gennaio 2015: 1ª campagna campionamento suoli e ortaggi	Luglio – Ottobre 2015: 3ª campagna campionamento suoli e ortaggi				
Marzo 2015: 2ª campagna campionamento suoli e ortaggi	Ottobre 2015: 2ª campagna campionamento acque superficiali, sotterranee e drenaggi minerari				
Aprile 2015: 1 ^a campagna campionamento acque superficiali e sotterranee	Ottobre 2015: 1 ^a campagna campionamento stream sediments e sedimenti				
Maggio 2015: 1ª campagna campionamento drenaggi minerari e specie biologiche	Novembre 2015: 2ª campagna campionamento specie biologiche				

Tabella 1.1. Date e strutturazione delle campagne di campionamento.

I campioni raccolti sono stati analizzati e caratterizzati per una serie di parametri chimici, fisici e biologici; i dati ottenuti hanno costituito la base per le Relazioni di Breve e Medio Periodo e sono parte integrante della presente Relazione Finale. In aggiunta alle campagne di acquisizione previste dall'Accordo di Collaborazione, per l'intero periodo è proseguito lo studio delle fasi mineralogiche alla base del processo di rilascio dei contaminanti, per una migliore caratterizzazione del loro contenuto in elementi tossici e potenzialmente tossici e della loro tendenza alla alterazione. A tale studio geochimico-mineralogico è stato associato il monitoraggio delle portate delle due gallerie principali di drenaggio, la galleria Sant'Erasmo (miniera di M. Arsiccio) e la galleria Ribasso del Pollone (miniera del Pollone). I dati di portata acquisiti sono stati anche trasmessi ai tecnici incaricati dal Comune, come integrazione.

In aggiunta, a partire da Novembre 2015 è stato condotto uno studio geologico-strutturale del bacino del Torrente Baccatoio attraverso il rilevamento geologico di dettaglio dell'area, al fine di meglio definire gli affioramenti, individuare le principali discontinuità strutturali possibili vie preferenziali di risalita e circolazione di fluidi e di ricostruire l'assetto idro-strutturale del bacino.

1.2. Matrici ambientali

Tipologie

Le matrici ambientali campionate ed analizzate sono:

- acque sotterranee di sorgente e di pozzo;
- acque superficiali del Torrente Baccatoio;
- acque dei drenaggi acidi di miniera;
- colonie batteriche nelle gallerie minerarie ed all'esterno di queste;
- sedimenti all'ingresso delle gallerie minerarie e nell'alveo del torrente, suoli inondabili;
- suoli e vegetali.

Sorgenti

Sono state campionate 16 sorgenti, di cui 10 libere e 6 captate dal gestore idrico per fini idropotabili. La tipologia, la localizzazione e le date di campionamento sono riportate in Tabella 1.2; l'ubicazione su base topografica in Appendice A.

Le sorgenti libere poste a quote superiori ai 700 m s.l.m. sono localizzate nella parte montana del bacino del Torrente Baccatoio. Di queste, le sorgenti VSSEN, VSFSA e VSVAC scaturiscono al contatto tettonico tra le formazioni acquifere carbonatiche norico-retiche della Falda Toscana e il substrato impermeabile composto dalle rocce scistose e quarzitiche paleozoiche del basamento metamorfico (Formazione delle Filladi Inferiori). La sorgente VSVLR scaturisce da una frattura nella Formazione del Calcare Cavernoso. Il resto delle sorgenti libere sono localizzate a quote inferiori a ≈ 350 m s.l.m. Le sorgenti VSVIT e VSMSA sono ancora nella parte montana del bacino, e possono ritenersi rappresentative di una circolazione idrica ipogea che interessa prevalentemente la formazione calcareo-dolomitica dei Grezzoni, con possibili apporti da acque infiltrate dalla Formazione dei Marmi. Le sorgenti VSTRF, VSMOA, VSMOS, VSMOG e VSDAD sono localizzate nel settore medio-basso, in termini di quote altimetriche, del bacino e drenano porzioni dell'acquifero della Falda Toscana il cui substrato impermeabile è costituito da filladi sericitiche e quarziti dell'Unità di Massa.

Le sorgenti captate dal gestore idrico sono localizzate quasi tutte nella parte montana del bacino, nel Comune di Stazzema, ad eccezione della sorgente VSMOG sita a Valdicastello, nel Comune di Pietrasanta. Delle sorgenti captate, la sorgente VSCAN scaturisce dalla Formazione dei Grezzoni, mentre tutte le altre fuoriescono al contatto tettonico tra la Falda Toscana e il substrato paleozoico. Le sorgenti studiate hanno contribuito a caratterizzare gli acquiferi principali del bacino, anche in riferimento alla contaminazione da Tl ed altri EPT.

Sigla stazione	Denominazione stazione	Tipologia	Località	Comune	Longitudine (UTM)	Latitudine (UTM)	Quota (m s.l.m.)	Data e operatori – I Campagna	Data e operatori – II Campagna
VSSEN	Case Sennari	s.l.	Sant'Anna di Stazzema	Stazzema	602898	4870027	753	28/04/15 CNR	16/10/15 DST
VSFSA	Foce di Sant'Anna	s.l.	Sant'Anna di Stazzema	Stazzema	602316	4870376	771	28/04/15 CNR	16/10/15 DST
VSVAC	Vaccareccia	s.l.	Sant'Anna di Stazzema	Stazzema	601961	4870251	742	28/04/15 CNR	16/10/15 DST
VSVLR	Valle Ripe	s.l.	Stazzema	Stazzema	601797	4869741	720	28/04/15 CNR	16/10/15 DST
VSVIT	La Vite	s.l.	Molini di Sant'Anna	Stazzema	602378	4869044	290	28/04/15 CNR	16/10/15 DST
VSMSA	Molini di Sant'Anna	s.l.	Molini di Sant'Anna	Stazzema	602402	4868965	312	28/04/15 CNR	16/10/15 DST
VSTRF	Tre Fontane	s.l.	Valdicastello	Pietrasanta	601391	4867531	96	28/4/15 DST	16/10/15 DST
VSMOA	Moresco Alta	s.l.	Valdicastello	Pietrasanta	601499	4867440	125	29/04/15 DST	16/10/15 CNR
vsmos	Moresco Sondaggio	s.l.	Valdicastello	Pietrasanta	601499	4867440	125	29/04/15 DST	16/10/15 CNR
VSDAD	Dal Deo	s.l.	Monteggiori	Camaiore	601511	4866946	160	28/04/15 CNR	16/10/15 DST
VSPAR	Sant'Anna Parcheggio	s.c.	Sant'Anna di Stazzema	Stazzema	602142	4869836	650	29/04/15 DST	16/10/15 CNR
VSPAE	Sant'Anna Paese	s.c.	Sant'Anna di Stazzema	Stazzema	602232	4869656	625	29/04/15 DST	16/10/15 CNR
VSCAN	Sant'Anna Canale	s.c.	Sant'Anna di Stazzema	Stazzema	602561	4869526	452	29/04/15 DST	16/10/15 CNR
VSLNZ	Lenzo	s.c.	La Culla	Stazzema	602760	4869005	515	29/04/15 DST	16/10/15 CNR
VSCRP	Carpigna	s.c.	La Culla	Stazzema	602739	4868771	527	29/04/15 DST	16/10/15 CNR
VSMOG	Moresco Galleria	s.c.	Valdicastello	Pietrasanta	601499	4867440	125	29/04/15 DST	16/10/15 CNR

s.l. = sorgente libera

Tabella 1.2. Localizzazione, tipologia e date di campionamento delle sorgenti.

Pozzi

I pozzi campionati (tutti di proprietà privata) e analizzati sono 10. La localizzazione, la tipologia e le date di campionamento sono schematizzate in Tabella 1.3; l'ubicazione su base topografica in Appendice A.

Sigla stazione	Tipologia	Località	Comune	Longitudine (UTM)	Latitudine (UTM)	Quota (m s.l.m.)	Data e operatori – I Campagna	Data e operatori – II Campagna
VPS06	p.s.	Valdicastello	Pietrasanta	601378	4867419	77	28/04/15 DST	20/10/15 DST
VPS05	p.s.	Valdicastello	Pietrasanta	601292	4867398	78	nc	20/10/15 DST
VPS03	p.s.	Valdicastello	Pietrasanta	601024	4867161	64	28/04/15 DST	20/10/15 DST
VPS02	p.s.	Valdicastello	Pietrasanta	600611	4866995	46	28/04/15 DST	20/10/15 DST
VPS01	p.s.	Valdicastello	Pietrasanta	600449	4866982	40	28/04/15 DST	20/10/15 DST
VPS07	p.s.	Pollino	Pietrasanta	599279	4866030	5	29/04/15 DST	20/10/15 DST

s.c. = sorgente captata

CNR = operatori dell'Istituto di Geoscienze e Georisorse (IGG) – CNR di Pisa

DST = operatori del Dipartimento di Scienze della Terra – Università di Pisa

VPP03	p.p.	Valdicastello	Pietrasanta	600456	4866931	42	28/04/15 DST	20/10/15 DST
VPP02	p.p.	Valdicastello	Pietrasanta	600152	4867096	28	28/04/15 DST	20/10/15 DST
VPP04	p.p.	Ponte Baccatoio	Pietrasanta	599683	4866818	20	28/04/15 DST	20/10/15 DST
VPP01	p.p.	Pollino	Pietrasanta	599410	4866727	12	28/04/15 DST	20/10/15 DST

p.s. = pozzo superficiale (profondità inferiore a 15 m)

Tabella 1.3. Localizzazione, tipologia e date di campionamento dei pozzi.

I pozzi sono tutti localizzati nella parte medio-bassa del bacino, in zona di conoide/pianura alluvionale. Sulla base della profondità, i pozzi sono stati suddivisi in "superficiali" e "profondi": i pozzi superficiali captano la falda freatica contenuta nel materasso alluvionale; i pozzi profondi sono verosimilmente attestati nel substrato roccioso costituito dal Calcare Cavernoso, ad eccezione del VPP04, che risulta relativamente profondo ma non ci sono informazioni circa la sua intercettazione dell'eventuale bedrock di Calcare Cavernoso, che in quella zona potrebbe essere più profondo del pozzo. Attraverso lo studio geochimico delle acque di pozzo è stato possibile caratterizzare le acque sotterranee del materasso alluvionale e localmente della falda del Calcare Cavernoso in termini di contaminazione da TI ed altri EPT.

Le acque superficiali – il Torrente Baccatoio

Il Torrente Baccatoio è stato studiato campionando ed analizzando le acque del torrente in 16 stazioni di campionamento, elencate nella Tabella 1.4 da monte verso valle. La localizzazione grafica delle stazioni è riportata in Appendice A. Nella tabella sono riportate anche le date di campionamento per le due campagne di cui alla Tabella 1.1.

Sigla stazione	Denominazione stazione	Tipologia	Località	Comune	Longitudine (UTM)	Latitudine (UTM)	Quota (m s.l.m.)	Data e operatori – I Campagna	Data e operatori – II Campagna
VTOLG	Sommità discarica – Sant'Olga	T.B., parte montana	Sant'Anna di Stazzema	Stazzema	603091	4869494	524	27/04/15 CNR	22/10/15 CNR
VTBDA	Base discarica Arsiccio	T.B., parte montana	Sant'Anna di Stazzema	Stazzema	603001	4869502	500	27/04/15 CNR	22/10/15 CNR
VTLBN	La Berna	affluente dx T.B., parte montana	Sant'Anna di Stazzema	Stazzema	602992	4869520	500	27/04/15 CNR	22/10/15 CNR
VTANG	Buca dell'Angina	T.B., parte montana	Sant'Anna di Stazzema	Stazzema	602758	4869398	422	27/04/15 CNR	22/10/15 DST
VTGDO	Guado La Vite	T.B., parte montana	Molini di Sant'Anna	Stazzema	602491	4869196	360	27/04/15 CNR	22/10/15 DST
VTPPT	Ponte valle	T.B., parte	Molini di	Stazzema	602328	4868936	207	27/04/15	22/10/15

p.p. = pozzo profondo (profondità presunta superiore a 40 m)

nc = non campionato

CNR = operatori dell'Istituto di Geoscienze e Georisorse (IGG) - CNR di Pisa

DST = operatori del Dipartimento di Scienze della Terra – Università di Pisa

	sorgente Molini di Sant'Anna	montana	Sant'Anna					CNR	DST
VTPPO	Ponte miniera Pollone	T.B., parte montana	Valdicastello	Pietrasanta	602066	4868536	238	27/04/15 DST	22/10/15 DST
VTPPV	Ponte Piovane	T.B., conoide alluvionale	Valdicastello	Pietrasanta	601809	4868196	130	27/04/15 DST	22/10/15 CNR
VTBAL	Borgo Allegro	T.B., conoide alluvionale	Valdicastello	Pietrasanta	601745	4868024	118	27/04/15 DST	22/10/15 CNR
VTCRO	CRO Valdicastello	T.B., conoide alluvionale	Valdicastello	Pietrasanta	601554	4867600	94	27/04/15 DST	22/10/15 DST
VTPRG	Ponte Regnalla	T.B., conoide alluvionale	Valdicastello	Pietrasanta	600763	4867011	50	27/04/15 DST	22/10/15 DST
VTVAS	Valle vasche sedimentazione	T.B., conoide alluvionale	Valdicastello	Pietrasanta	600142	4866973	30	27/04/15 DST	05/11/15 DST
VTSRZ	Ponte SS	T.B., pianura	Ponte	Pietrasanta	599577	4866521	17	27/04/15	22/10/15
	Sarzanese	alluvionale	Baccatoio			1000322	1,	DST	CNR
VTINC	Ponte Inceneritore Pollino	T.B., pianura alluvionale	Pollino	Pietrasanta	599376	4865052	2	DST 27/04/15 DST	22/10/15 CNR
VTINC	Ponte Inceneritore	T.B., pianura		Pietrasanta Pietrasanta	599376 597771			27/04/15	22/10/15
	Ponte Inceneritore Pollino Ponte SS	T.B., pianura alluvionale T.B., pianura	Pollino Marina di			4865052	2	27/04/15 DST 27/04/15	22/10/15 CNR 22/10/15

Tabella 1.4. Localizzazione, tipologia e date di campionamento delle acque superficiali.

CNR = operatori dell'Istituto di Geoscienze e Georisorse (IGG) – CNR di Pisa DST = operatori del Dipartimento di Scienze della Terra – Università di Pisa

Le stazioni sono state individuate e selezionate con l'obiettivo di caratterizzare adeguatamente il torrente lungo tutta l'asta fluviale dalla sorgente fino alla foce, in particolare in riferimento al trasporto del TI e di altri EPT. Le stazioni VTOLG e VTBDA rappresentano il tratto più elevato, in termini di quota, del Torrente Baccatoio, e rappresentano altresì il tratto più fortemente condizionato dai drenaggi acidi delle gallerie Ribasso Pianello 2 e Sant'Olga della miniera di M. Arsiccio. Per la maggior parte dell'anno, infatti, tali drenaggi minerari costituiscono le effettive sorgenti del torrente. La stazione VTLBN è invece rappresentativa di un piccolo ruscello in destra idrografica del torrente con portata stagionale. La stazione VTANG è anch'essa fortemente condizionata da drenaggi acidi, effluenti dalla galleria Sant'Erasmo (miniera di M. Arsiccio). La stazione VTGDO è localizzata immediatamente a valle della confluenza del ramo idrografico che nasce dalle gallerie di M. Arsiccio con il Fosso delle Piastre, che si origina a Sant'Anna di Stazzema e che è attivo solo in occasione di eventi piovosi intensi o di periodi piovosi prolungati. Questa stazione è rappresentativa anche delle condizioni chimico-fisiche del torrente a monte della sorgente Molini di Sant'Anna, in scarico nel torrente dal mese di settembre 2014. La stazione

immediatamente a valle della sorgente è VTPPT. Le stazioni VTPPO e VTPPV rappresentano rispettivamente il torrente immediatamente a monte e a valle dell'area mineraria del Pollone. Le stazioni VTPPV, VTBAL, VTCRO, VTPRG, VTVAS rappresentano il torrente lungo l'abitato di Valdicastello, a monte (VTPPV e VTBAL) e a valle (VTCRO, VTPRG, VTVAS) della discarica di materiale minerario sita in località Rezzaio. La stazione VTVAS è localizzata a valle delle vasche di decantazione poste in prossimità della località Regnalla. Le stazioni VTINC, VTAUR e VTMAR, infine, sono nel tratto di pianura alluvionale/costiera del torrente: VTINC è a valle dell'inceneritore di Falascaia, e VTAUR e VTMAR in prossimità della foce.

I drenaggi acidi

Sono stati studiati i drenaggi acidi effluenti da 5 gallerie minerarie. La localizzazione e le date di campionamento sono riportate in Tabella 1.5, l'ubicazione su base cartografica in Appendice A.

Sigla stazione	Denominazione stazione	Tipologia	Località	Comune	Longitudine (UTM)	Latitudine (UTM)	Quota (m s.l.m.)	Data e operatori – I Campagna	Data e operatori – II Campagna
VDRPN	Ribasso Pianello 2	drenaggio	Sant'Anna di Stazzema	Stazzema	603218	4869552	585	12/05/15 DST	21/10/15 DST
VDOLG	galleria Sant'Olga	drenaggio	Sant'Anna di Stazzema	Stazzema	603092	4869479	524	12/05/15 DST	21/10/15 DST
VDSRM	galleria Sant'Erasmo	drenaggio	Sant'Anna di Stazzema	Stazzema	602943	4869506	482	12/05/15 DST	21/10/15 DST
VDPFR	galleria Pozzo Francese	drenaggio	Valdicastello	Pietrasanta	602048	4868679	228	12/05/15 DST	nc
VDRPO	Ribasso Pollone	drenaggio	Valdicastello	Pietrasanta	602028	4868439	174	12/05/15 DST	21/10/15 DST

nc = non campionato

CNR = operatori dell'Istituto di Geoscienze e Georisorse (IGG) – CNR di Pisa

DST = operatori del Dipartimento di Scienze della Terra – Università di Pisa

Tabella 1.5. Localizzazione e date di campionamento di drenaggi minerari.

I sedimenti

Nelle Tabelle 1.6, 1.7 e 1.8 sono elencate le stazioni di campionamento dei sedimenti, da monte verso valle, e le tipologie campionate. In Appendice A la localizzazione su base cartografica. In accordo con ARPAT, è stato deciso di fare un'unica campagna alla fine della stagione estiva.

Le stazioni di campionamento per gli *stream sediments* sono 11 (Tabella 1.6) e rappresentano i punti più rappresentativi del torrente in riferimento ai processi di trasporto e/o precipitazione. Da monte, nelle stazioni da C1bis a C4 è stata prelevata un'unica aliquota, data la tendenza erosiva del torrente in questo tratto montano, e quindi un esiguo spessore di sedimenti. Dal C7 fino al C12

sono state prelevate due aliquote per ogni stazione: una superficiale, rappresentante la frazione "mobile" dei sedimenti, ed una più profonda e meno mobile, definita come frazione "fossile".

Sono stati inoltre campionati sedimenti extra alveo in 5 stazioni (Tabella 1.7) lungo il tratto alluvionale del torrente. Si tratta di sedimenti prospicienti l'alveo e soggetti ad esondazioni recenti.

Sigla stazione	Denominazione stazione	Tipologia	Località	Comune	Longitudine (UTM)	Latitudine (UTM)	Quota (m s.l.m.)	Data e operatori
C1bis	Valle Sant'Olga	sed. in alveo	Sant'Anna di Stazzema	Stazzema	603092	4869479	524	27/10/15 DST
C2	Base discarica M. Arsiccio	sed. in alveo	Sant'Anna di Stazzema	Stazzema	603001	4869502	500	27/10/15 DST
C2bis	Valle Sant'Erasmo	sed. in alveo	Sant'Anna di Stazzema	Stazzema	602949	4869507	475	27/10/15 DST
C3bis	Guado presso La Vite	sed. in alveo	Molini di Sant'Anna	Stazzema	602491	4869196	360	27/10/15 DST
СЗ	Ponte valle sorgente Molini di Sant'Anna	sed. in alveo	Molini di Sant'Anna	Stazzema	602347	4868936	291	27/10/15 DST
C4	Località Parigi	sed. in alveo	Valdicastello	Pietrasanta	601925	4868289	148	27/10/15 DST
C7bis	Borgo Allegro	sed. in alveo	Valdicastello	Pietrasanta	601785	4868151	125	27/10/15 DST
С7	CRO Valdicastello	sed. in alveo	Valdicastello	Pietrasanta	601555	4867602	89	27/10/15 DST
C 9	Ponte Regnalla	sed. in alveo	Valdicastello	Pietrasanta	600750	4867002	49	27/10/15 DST
C10	Valle vasche sedimentazione	sed. in alveo	Valdicastello	Pietrasanta	600213	4866961	38	27/10/15 DST
C12	Inceneritore Pollino	sed. in alveo	Pollino	Pietrasanta	599435	4865163	2	27/10/15 DST
sed. = sed DST = ope	imenti ratori del Dipartim	ento di Scien	ze della Terra –	Università di P	isa			

Tabella 1.6. Localizzazione e date di campionamento dei sedimenti in alveo.

Sigla stazione	Denominazione stazione	Tipologia	Località	Comune	Longitudine (UTM)	Latitudine (UTM)	Quota (m s.l.m.)	Data e operatori
C29	Località Parigi	sed. extra alveo	Valdicastello	Pietrasanta	601924	4868288	149	27/10/15 DST
C28	Sorgenti Moresco	sed. extra alveo	Valdicastello	Pietrasanta	601497	4867433	81	27/10/15 DST
C27	Ponte Regnalla	sed. extra alveo	Valdicastello	Pietrasanta	600753	4866998	50	27/10/15 DST
C26	Vasche sedimentazione	sed. extra alveo	Valdicastello	Pietrasanta	600060	4867085	30	27/10/15 DST
C25	Ponte SS Sarzanese	sed. extra alveo	Ponte Baccatoio	Pietrasanta	599638	4866783	21	27/10/15 DST

Tabella 1.7. Localizzazione e date di campionamento dei sedimenti fuori dall'alveo ma potenzialmente inondabili.

I sedimenti all'imbocco delle gallerie minerarie (Tabella 1.8) sono stati campionati all'ingresso di 7 gallerie, 4 della miniera di M. Arsiccio e 3 del Pollone. Per completezza di analisi, i sedimenti sono

stati campionati anche laddove non si è riscontrata la presenza di drenaggi acidi cospicui e costanti.

Sigla stazione	Denominazione stazione	Tipologia	Località	Comune	Longitudine (UTM)	Latitudine (UTM)	Quota (m s.l.m.)	Data e operatori
G1	Ribasso Pianello 2	sed. ingresso miniere / M.A.	Sant'Anna di Stazzema	Stazzema	603218	4869552	585	27/10/15 DST
G2	galleria Sant'Anna	sed. ingresso miniere / M.A.	Sant'Anna di Stazzema	Stazzema	602819	4869122	550	27/10/15 DST
G3	galleria Sant'Olga	sed. ingresso miniere / M.A.	Sant'Anna di Stazzema	Stazzema	603092	4869479	524	27/10/15 DST
G11	galleria Sant'Erasmo	sed. ingresso miniere / M.A.	Sant'Anna di Stazzema	Stazzema	602943	4869506	482	27/10/15 DST
G6	galleria Pozzo Francese	sed. ingresso miniere / P.	Valdicastello	Pietrasanta	602048	4868679	228	27/10/15 DST
G 7	galleria Rosina	sed. ingresso miniere / P.	Valdicastello	Pietrasanta	602057	4868522	191	27/10/15 DST
G10	Ribasso Pollone	sed. ingresso miniere / P.	Valdicastello	Pietrasanta	602028	4868439	174	27/10/15 DST

sed. = sedimenti

M.A. = miniera di M. Arsiccio

P. = miniera Pollone

DST = operatori del Dipartimento di Scienze della Terra – Università di Pisa

Tabella 1.8. Localizzazione e date di campionamento dei sedimenti all'ingresso delle gallerie minerarie.

Al fine di una migliore caratterizzazione dei sedimenti nell'alveo attivo del torrente sono state recentemente raccolte due carote di sedimento indisturbato in prossimità della stazione VTINC. Questi campioni si aggiungono al contesto conoscitivo.

Al campionamento delle matrici ambientali riassunte in precedenza si aggiungono gli specifici campionamenti di suoli e vegetali, come riportati in dettaglio nella Relazione di Medio Periodo, e la raccolta di campioni microbiologici, anch'essi descritti nella Relazione di Medio Periodo.

1.3. Campionamenti e metodi di analisi

Le modalità di campionamento ed analisi sono riportate nelle Relazioni di Breve e Medio Periodo. Le procedure di campionamento sono state opportunamente concertate con ARPAT e seguono i criteri dettati dalle Normative.

Le metodologie analitiche sono quelle previste; le modalità delle sequenze di estrazione dai sedimenti sono state concertate con ARPAT e seguono esse stesse i criteri normativi.

Con il fine di migliorare il quadro delle conoscenze, ai metodi analitici previsti sono state aggiunte analisi ritenute di particolare utilità, quali analisi mineralogiche tramite diffrattometria a raggi-X e di chimismo totale delle matrici solide tramite fluorescenza di raggi-X.

L'intero sviluppo delle fasi di campionamento e di analisi è stato condiviso con ARPAT.

2. Assetto geologico-idrogeologico del bacino del Torrente Baccatoio

Tra gli obiettivi inclusi nell'Accordo di Collaborazione è prevista una maggiore definizione delle caratteristiche idrogeologiche del bacino idrografico del Torrente Baccatoio, che erano state sinteticamente descritte nella Relazione di Breve Periodo essenzialmente su informazioni derivanti da letteratura esistente. Ciò non può prescindere dalla necessità di disporre di un quadro geologico-strutturale aggiornato, poiché le caratteristiche delle rocce (porosità, permeabilità), il loro assetto geologico-strutturale, la presenza di sistemi di discontinuità, di fratturazione e di forme carsiche, la diffusione di aree mineralizzate, incidono sulla circolazione idrica sotterranea, sui tempi di percolazione e residenza nel sottosuolo, sulla presenza di sorgenti e di riserve idriche e sulle caratteristiche qualitative e quantitative della risorsa idrica.

Al fine di acquisire i dati necessari alla comprensione geologico-strutturale dell'area di studio, è stata attivata una borsa di studio specifica.

2.1. Geologia generale e strutturale

In questo paragrafo vengono illustrati i principali risultati dello studio relativo all'assetto geologico-strutturale del bacino idrografico del Torrente Baccatoio, che ricopre un'area di circa 20 km². Le attività di rilevamento sono state estese anche oltre l'area di indagine in zone significative, al fine di meglio definire il contesto geologico e l'assetto strutturale in relazione alla problematica di interesse.

Lo studio geologico-strutturale si è articolato attraverso le seguenti fasi di lavoro:

- 1. analisi di foto aeree a grande scala e immagini satellitari per individuare i principali lineamenti e caratterizzare le problematiche relative alle strutture tettoniche e alle coperture presenti nell'area oggetto di studio;
- 2. rilevamento geologico di dettaglio finalizzato alla definizione dell'assetto strutturale, delle geometrie delle strutture presenti ed alla verifica della consistenza e della natura dei lineamenti individuati dall'analisi di foto aeree e immagini satellitari;
- 3. elaborazione dello schema tettonico (Figura 2.1) e della Carta Geologico-Strutturale del bacino del Torrente Baccatoio, rilevata alla scala 1:5000 e suo allestimento nella versione presentata (Figura 2.2);
- 4. realizzazione di sezioni geologiche longitudinali e trasversali rispetto alla valle del Torrente

Baccatoio, di cui in Figura 2.2 ne viene riportata una significativa.

2.1.1. Inquadramento geologico regionale

Il bacino del Torrente Baccatoio si colloca nelle Alpi Apuane meridionali vicino alla terminazione periclinale della finestra tettonica delle Alpi Apuane, denominata Finestra Tettonica di Sant'Anna (Figura 2.1). Nell'area di indagine affiorano alcune delle unità tettoniche che costituiscono l'edificio strutturale appenninico. In posizione geometrica inferiore si trovano le unità toscane metamorfiche (Unità delle Apuane o "Autoctono Auctt." e Unità di Massa), cui si sovrappongono la Falda Toscana e, in posizione geometrica più alta, termini attribuibili alle Unità Liguri (Figura 2.2).

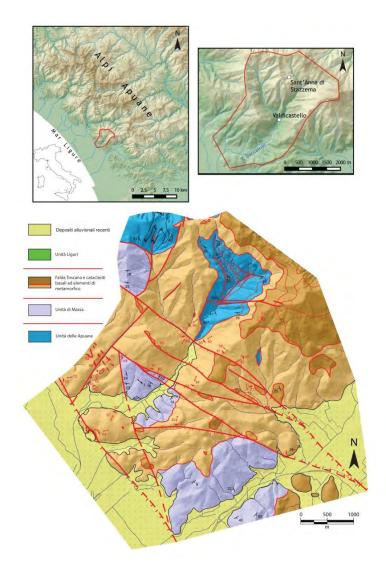


Figura 2.1. Schema tettonico dell'area della Finestra Tettonica di Sant'Anna.



Figura 2.2. Carta geologico-strutturale del bacino del Torrente Baccatoio.

Le strutture deformative più antiche nelle unità metamorfiche si sono sviluppate a livelli medio crostali; in particolare, per l'Unità di Massa sono documentate condizioni di 400-500°C e pressioni superiori a 0.8 GPa, mentre per l'Unità delle Apuane risultano condizioni metamorfiche di poco inferiori (temperature di 350-450 °C e pressioni comprese tra 0.4-0.6 GPa - Molli et al., 2002 e relativa bibliografia).

In accordo con le più recenti ricerche geologiche (Carmignani & Kligfield, 1990; Carmignani et al., 1994; Molli, 2012 e relativa bibliografia), l'evoluzione strutturale delle unità metamorfiche può essere associata a due eventi tettono-metamorfici regionali. Durante l'evento D1 si realizza la strutturazione principale, testimoniata da una scistosità penetrativa (Sp) che risulta di piano assiale di pieghe isoclinali, con dimensioni da millimetriche a plurichilometriche e geometrie fortemente non-cilindriche. Questa foliazione è associata ad una lineazione mineralogica e di estensione orientata sud-ovest/nord-est. Al successivo evento D2 è associabile invece lo sviluppo di strutture attraverso le quali si realizza parte dell'esumazione con transizione delle unità metamorfiche dalla crosta media a quella superficiale (Carmignani & Kligfield, 1990; Molli et al., 2000; Molli, 2012). In particolare, agli stadi più antichi della deformazione D2 sono associabili pieghe non-cilindriche associate ad un clivaggio di crenulazione suborizzontale e zone di taglio retrograde, mentre durante gli stadi finali si sviluppano strutture da semi-fragili a fragili, rappresentate da pieghe aperte o tipo *kink* con piano assiale sub-verticale e da faglie dirette a basso angolo.

Sulla base delle datazioni radiometriche K-Ar e ⁴⁰Ar-³⁹Ar disponibili (Kligfield et al., 1986), le strutture deformative sin-metamorfiche D1 si sviluppano tra i 27 e i 20 Ma, mentre le strutture D2, sviluppate a temperature maggiori di 250 °C, pre-datano gli 11 Ma considerando i dati termo-cronologici derivati da analisi delle tracce di fissione negli zirconi (Fellin et al., 2007).

Nelle unità più alte dell'edificio strutturale nell'area di studio sono poco documentabili le strutture legate agli stadi contrazionali della loro storia deformativa; sono invece molto evidenti le strutture tardive (legate alla destrutturazione del prisma orogenico), rappresentate da faglie normali a basso angolo a cui sono associati i contatti anomali tra le Unità Liguri e i termini più alti della successione della Falda Toscana (Macigno) e quelli più bassi (livelli triassici).

L'esumazione finale delle unità metamorfiche si sviluppa a partire da circa 4 Ma e si realizza attraverso sistemi di faglie normali ad alto angolo che interessano l'edificio strutturale precedentemente realizzato, deformando insieme unità metamorfiche ed unità non-metamorfiche (Molli et al., 2015; Molli et al., 2016 e bibliografia).

2.1.2. Assetto geologico della zona attorno a Valdicastello-Sant'Anna

La zona di Valdicastello-Sant'Anna è stata oggetto di numerosi studi collegabili a peculiari problematiche geologiche affrontate fin dalla fine dell'800, anche in relazione alla presenza di mineralizzazioni oggetto di attività di ricerca ed estrattiva fin dal periodo etrusco-romano.

Per l'elenco completo della bibliografia, dell'evoluzione storica delle ricerche e delle diverse problematiche geologiche, geologico-strutturali e giacimentologiche si rimanda alle note illustrative del Foglio 260 Viareggio realizzato in ambito CARG (Conti et al., 2005). Qui di seguito verranno presentati soltanto gli aspetti ritenuti più significativi al fine dell'indagine in oggetto.

Come specificato in precedenza, nell'area di studio affiorano alcune delle unità tettoniche che costituiscono l'edificio strutturale appenninico. In particolare, si possono osservare in posizione geometrica inferiore le Unità Toscane metamorfiche (Unità delle Apuane o "Autoctono Auctt." e Unità di Massa), cui si sovrappongono la Falda Toscana e, in posizione geometrica più alta, termini attribuibili alle Unità Liguri, con particolare riferimento all'unità del Flysch ad Elmintoidi (Unità di Ottone).

Di seguito queste unità sono discusse dall'alto verso il basso.

<u>Unità Ottone</u>

Questa unità è una delle diverse unità di Flysch ad Elmintoidi che caratterizzano le cosiddette Unità Liguri Esterne (Elter, 1975; Molli, 2008 e bibliografia). Anche conosciuta con il nome di Unità Ottone-S.Stefano, essa è costituita da torbiditi calcareo-marnose del Cretaceo superiore (Campaniano, Elter et al. 1991). Nell'area di studio questa unità affiora in modo estremamente limitato sulla strada che da Montebello raggiunge La Culla e a nord-est di Monteggiori. In entrambe le località essa è osservabile in relazioni di sovrapposizione diretta con il Macigno della Falda Toscana senza interposizione di litotipi attribuibili alle Unità Sub-Liguri.

Falda Toscana

La Falda Toscana è ben rappresentata cartograficamente nei suoi termini stratigraficamente più antichi (triassici), mentre risulta molto incompleta nella sua porzione Giurassico-Terziaria. I termini geometricamente più bassi dell'unità sono rappresentati dal Calcare Cavernoso Auctt., il cui protolite è tradizionalmente considerato come formato da un'alternanza di originario gesso (trasformato durante la storia diagenetica in anidrite) e dolomie in strati di spessore da metrico a decametrico (cfr. Anidriti di Burano). Questo tipo di deposito è datato al Norico-Retico (Trevisan,

1955, Passeri, 1974) ed è collegabile ad un ambiente evaporitico di Sabka e originariamente associato a livelli di sale (NaCl).

Nella sua tipologia di affioramento più tipica, ben rappresentata nell'area d'indagine, il "Calcare Cavernoso" appare come breccia carbonatica ben cementata costituita da clasti di calcari grigi, calcari dolomitici e dolomie in una matrice carbonatica presente in quantitativi variabili. La breccia, che molto spesso mostra la tipica struttura "vacuolare" o a "cellette" collegata alla dissoluzione dei solfati e/o alla dedolomitizzazione dei carbonati, è interpretabile in modo generale come una breccia tettonica o una cataclasite (Figura 2.3a), anche se non mancano all'interno della stessa corpi di brecce sedimentarie di origine carsica di non sempre facile delimitazione.

In accordo con quanto illustrato e documentato in ambito CARG (F.260 Viareggio) anche in questo lavoro il Calcare Cavernoso Auctt. (cfr. Foglio 104 Carta Geologica d'Italia in scala 1:100.000) è stato suddiviso in una porzione geometricamente più alta (CCA nella carta in Figura 2.2, 2.3a), da considerare come una breccia tettonica base della Falda Toscana, e in una porzione geometricamente più bassa (GRO). Quest'ultima si differenzia dalla precedente per la diffusa e localmente dominante presenza di clasti di metamorfiti (Figura 2.3b). Si tratta di brecce carbonatiche da clasto-sostenute (GROb dominanti arealmente) a matrice-sostenute (GROa), con matrice e/o cemento carbonatico. Il loro aspetto generale è fortemente variabile, presentandosi come brecce sia monogeniche che poligeniche; tra i clasti si riconoscono dolomie, metacalcari dolomitici, marmi, metacalcari selciferi, filladi e metarenarie (Figura 2.3a). Anche la dimensione dei clasti risulta estremamente variabile da pochi millimetri ad alcuni centimetri; raramente sono osservabili clasti di dimensioni più grandi fino ad alcuni metri.

Al di sopra del Calcare Cavernoso sono riconoscibili i Calcari a *Rhaetavicula Contorta* (Trevisan et al., 1971), i cui affioramenti più estesi si trovano sul M. Gabberi. Questa formazione è costituita da calcari grigio-nerastri ben stratificati (Figura 2.3c), con i singoli strati a spessore variabile da circa 10 cm fino a qualche metro. Questi depositi sono interpretabili come derivanti da un paleo-ambiente di rampa carbonatica (Ciarapica & Zaninetti, 1984).

Interposte tra il Calcare Cavernoso ed il Calcare a *Rhaetavicula Contorta* è presente un livello di brecce tettoniche e cataclasiti ad elementi di calcari, dolomie e marne immersi in matrice carbonatica (Figura 2.3d). I clasti presentano dimensioni variabili da alcuni millimetri ad alcuni centimetri. Questo livello è abbastanza continuo e raggiunge spessori notevoli, fino a circa 150 m sul versante occidentale del M. Gabberi.

Come già introdotto in precedenza, nell'area di studio la Falda Toscana risulta fortemente incompleta. In località Ponte Baccatoio si ritrovano calcari chiari tipo Calcare Massiccio, mentre i termini Giurassico superiore-Cretacico sono osservabili nei dintorni di Camaiore (es. in località Greppolungo). Nell'area di studio mancano completamente termini attribuibili alla Scaglia Toscana, mentre arenarie tipo Macigno sono osservabili, anche se mal esposte, a ovest e ad est di Monteggiori e in località Colombiera a sud-ovest di M. Colegno.

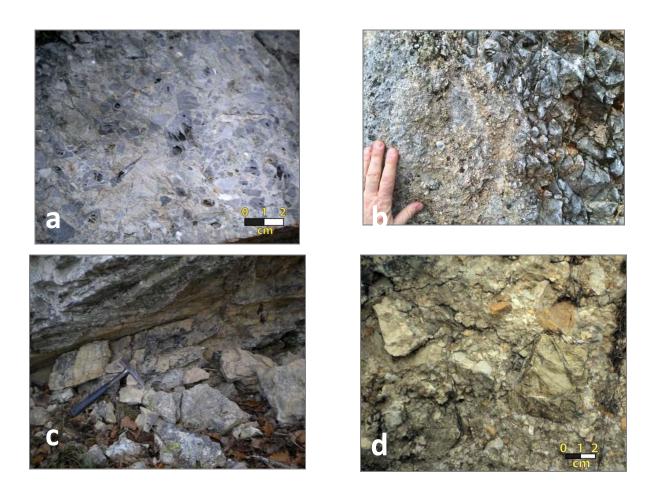


Figura 2.3. a) Brecce a clasti dolomitici che caratterizzano la Formazione del Calcare Cavernoso; b) brecce con clasti di metamorfiti (GRO); c) strati a spessore decimetrico di calcari nerastri appartenenti alla Formazione del Calcare a *Rhaetavicula Contorta*, M. Lieto; d) breccia tettonica con elementi prevalentemente marnosi.

Unità di Massa

Nell'area in esame, l'Unità di Massa affiora in una piccola finestra tettonica a sud di Valdicastello ed in corrispondenza del M. Anchiana, mentre affioramenti più estesi sono osservabili appena a sud dell'area di indagine tra Capezzano Pianore e Camaiore (Figura 2.1). Nell'area di studio questa unità è rappresentata unicamente dalla Formazione del Monte Folgorito (Patacca et al., 2011 e relativa bibliografia) ed è caratterizzata da un'alternanza di metarenarie e metapeliti, a cui sono

intercalati lenti di metaconglomerati con ciottoli di quarzo aventi dimensioni comprese tra alcuni millimetri ed alcuni centimetri (Figura 2.4 a,b). La parte alta della Formazione di M. Folgorito è costituita da calcescisti grigio scuri, metarenarie a grana fine e metapeliti nere di piattaforma carbonatico-terrigena (Patacca et al., 2011). La loro età è stata attribuita all'Anisico (Patacca et al., 2011).

Figura 2.4. a) Metaconglomerati con ciottoli di quarzo, M. Anchiana; b) metarenarie e metapeliti nella parte alta della Formazione di M. Folgorito, Solco della Zanetta.

Dal punto di vista strutturale, l'Unità di Massa si caratterizza per la presenza di una foliazione penetrativa in genere a basso angolo rispetto all'originaria stratificazione localmente osservabile (Figura 2.4). Le condizioni di esposizione dell'unità hanno impedito il riconoscimento di strutture cartografiche attribuibili alla deformazione D1 e solo raramente sono state osservate pieghe isoclinali aventi la foliazione principale come superfice di piano assiale. Sulla foliazione principale è presente una lineazione marcata da minerali metamorfici e/o dall'isorientazione di clasti nei metaconglomerati. Questa lineazione presenta un orientazione sud-ovest/nord-est (Figura 2.5b). A scala cartografica, la foliazione principale risulta deformata in una antiforme con asse di direzione appenninica ben evidenziata nella sezione geologica in Figura 2.2 e dalla dispersione dei poli di foliazione (e delle lineazioni principali) su un grande cerchio che ammette un asse orientato in direzione nord-ovest/sud-est (Figura 2.5a).

Questi assetti cartografici sono in accordo con quanto osservabile alla scala dell'affioramento che in molte località (es. lungo la strada per Valdicastello e di Bugliola) mostrano una foliazione principale deformata da un clivaggio di crenulazione avente direzione media N130 e con immersione verso sud-ovest (Figura 2.5c). Questa foliazione risulta di piano assiale di pieghe

aperte di dimensione da metrica a decimetrica, vergenza verso nord-est ed assi a direzione appenninica (Figura 2.5d). Solo localmente sono osservabili pieghe aperte associate ad un clivaggio di crenulazione sub-orizzontale.

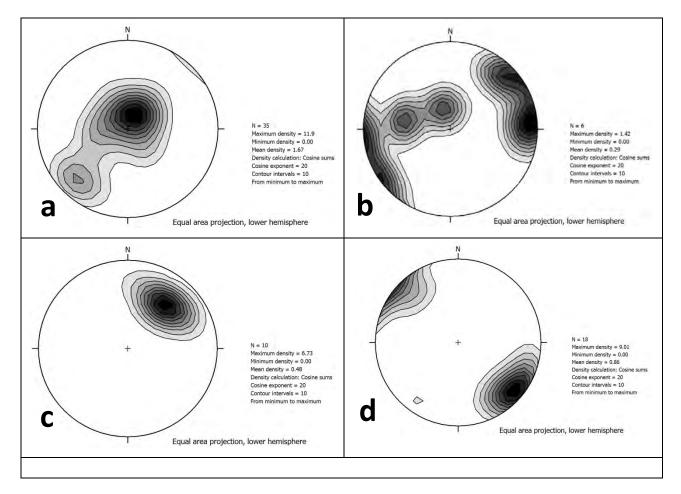
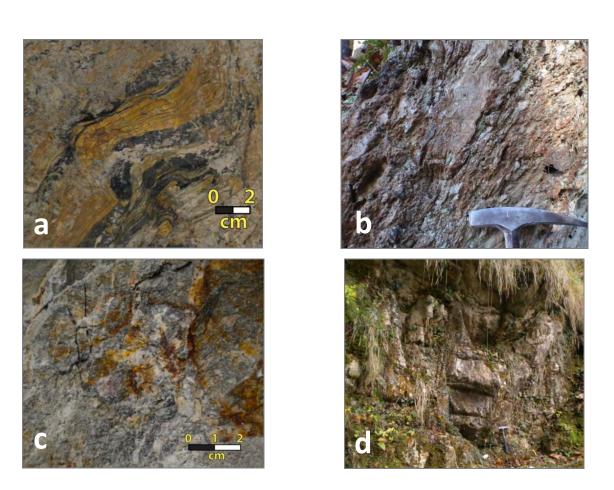


Figura 2.5. Proiezioni equi-area che mostrano la dispersione dei seguenti elementi strutturali: a) poli della foliazione principale (Sp); b) lineazione di estensione; c) poli della foliazione tardiva (St); d) assi delle pieghe tardive e lineazioni di intersezione Sp/St.

<u>Unità delle Apuane</u> (cfr. "Autoctono e Parautoctono Auctt." sensu Foglio 104 - Carta Geologica d'Italia e "Unità Autoctono Auctt." sensu Foglio 260 - CARG)

L'Unità delle Apuane, esposta nel nucleo della finestra di Sant'Anna, è caratterizzata da una successione litostratigrafica estremamente incompleta per laminazioni tettoniche possibilmente sviluppate a spese di un'originaria successione "condensata" (Carmignani et al., 1975). Essa è composta dai seguenti termini:


- Filladi Inferiori (FAF): filladi quarzitico-muscovitiche grigio scure e grigio-verdastre alternate a livelli di spessore variabile di quarziti grigio chiare. In molti affioramenti si presentano come un'alternanza di livelli quarzosi e livelli neri ricchi in tormalina spessi da alcuni millimetri ad alcuni

decimetri e paralleli alla foliazione principale (Figura 2.6a). L'età della formazione è stata attribuita al Cambriano superiore-Ordoviciano inferiore sulla base di analogie litologiche con il basamento paleozoico della Sardegna sud-orientale (Gattiglio et al., 1989; Conti et al., 1991).

- Porfiroidi e Scisti Porfirici (PRS): quarziti e filladi di colore grigio chiaro/biancastro o verde chiaro, con patine di alterazione giallastra (Figura 2.6b). Contengono cristalli di quarzo e K-feldspato, da millimetrici a centimetrici, circondati da una matrice scistosa quarzitico-sericitico o cloritica. Il protolite corrisponde a prodotti vulcanici di composizione riolitico-dacitica (Gattiglio et al., 1989 e bibliografia), e sulla base di correlazioni con litotipi analoghi osservabili nel basamento ercinico sardo è stata attribuita un'età Ordoviciano medio (Conti et al. 1991 e bibliografia).
- Verrucano (in affioramenti non rappresentabili sulla carta di Figura 2.2): metaconglomerati poligenici spesso matrice-sostenuti, scarsamente classati e caratterizzati da una bassa maturità composizionale e tessiturale (Figura 2.6c). I clasti sono da subarrotondati a subangolosi, con dimensioni centimetriche. La loro composizione è prevalentemente quarzosa, di colore da bianco a rosa, ma si trovano anche clasti filladici e carbonatici, immersi in una matrice quarzitico-filladica di colore grigio-violaceo. La loro età è attribuita al Ladinico-Carnico (Conti et al., 2005). Gli unici affioramenti osservabili nell'area d'indagine si trovano rispettivamente a valle della sorgente La Vite e a pochi metri a sud-ovest della sorgente Coletti (Figura 2.11 per la localizzazione della sorgente).
- Grezzoni (GRE): dolomie e calcari dolomitici massivi o con stratificazione ben evidente (Figura 2.6d) attribuibili ad un ambiente deposizionale di tipo lagunare di bassa profondità (Ciarapica & Passeri, 1978). L'età viene attribuita al Norico (Trevisan et al., 1971). I Grezzoni affiorano in maniera relativamente estesa nel fondovalle, ma si trovano anche lenti discontinue ai bordi della finestra tettonica.
- Marmi (MAA): marmi bianchi, grigi con sistemi anastomizzati di vene (cfr. Bardiglio Fiorito e Tigrato in Figura 2.6e) e brecce monogeniche. I marmi vengono in genere interpretati come derivanti da un originario protolite collegabile ad una piattaforma carbonatica, in particolare a una rampa carbonatica prossimale e a loro attribuita un'età hettangiana (Conti et al., 2005 CARG F.260). Nel caso delle tipologie Bardiglio Fiorito e Bardiglio Tigrato una loro genesi "tettonica" (pre- o sin-metamorfica) è stata ipotizzata recentemente (Mancini et al., 2009; Cinquini, 2011). La formazione dei Marmi è presente in limitati affioramenti sotto il paese di Sant'Anna di Stazzema ed è quasi del tutto assente nella parte orientale della finestra tettonica.
- Zebrino (MRZ): marmi da biancastri a color avorio, con liste o noduli di selce (Figura 2.6f). Dove

osservabili in assetti stratigrafici originari al di fuori dell'area di studio, questi marmi si collocano tra il Marmo s.s. ed il metacalcare selcifero (Meccheri et al., 2007; Carmignani et al., 2009). Nell'area in esame sono presenti esclusivamente in un affioramento sul M. Rocca.

- Scisti Sericitici (SSR): metabrecce, calcescisti e marmi a clorite di colore verde o grigio verdastro (Figura 2.6g), derivanti da originari termini di ambiente bacinale (peliti, marne, calcari impuri e risedimenti a granulometria variabile). L'età è stata attribuita all'Aptiano-Oligocene inferiore (Carmignani et al., 2009; Foglio 249 CARG). Gli affioramenti più estesi si trovano rispettivamente nella parte nord-occidentale della finestra tettonica e sulla strada principale che conduce a Sant'Anna di Stazzema, mentre sul lato sud-orientale questi termini risultano completamente laminati.
- Pseudomacigno (PSM): metarenarie a composizione quarzosa e micaceo-feldspatica alternate a scisti ardesiaci derivanti da originari depositi torbiditici (Figura 2.6h). Età Oligocene superiore-Miocene inferiore (Patacca et al., 2011 e bibliografia relativa).

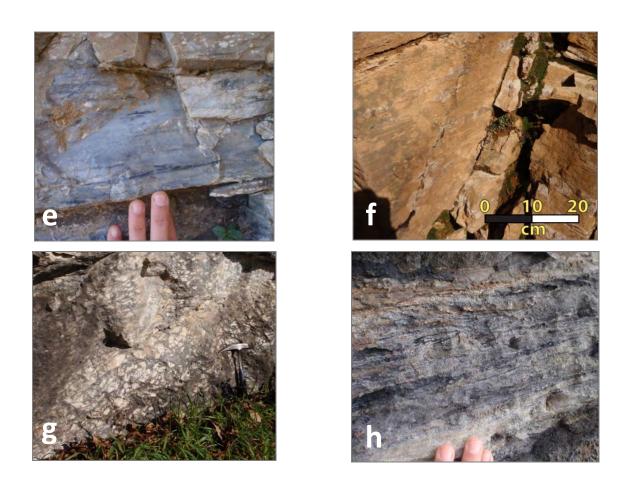


Figura 2.6. a) Filladi Inferiori con livelli a tormalina, sorgente La Vite; b) Porfiroidi, Pizzi del Bottino; c) metaconglomerati attribuibili al Verrucano, Loc. Coletti; d) Grezzoni con evidente stratificazione sub-orizzontale, sorgente Carpigna; e) Bardigli Tigrati, Via Duilio Pieri; f) Zebrini con liste di selce, M. Rocca g) metabrecce nella formazione degli Scisti Sericitici; h) metarenarie e metapeliti associate allo Pseudomacigno.

Dal punto di vista strutturale, la Finestra Tettonica di Sant'Anna presenta problematiche analoghe e confrontabili con quelle della "Zona dello Stazzemese", della quale rappresenta la prosecuzione sud-occidentale (Conti et al., 2005, Foglio 260 - CARG). L'area si caratterizza per la presenza di un'antiforme asimmetrica sviluppata a spese della foliazione metamorfica principale, osservabile nella gran parte dei litotipi affioranti nell'area ad eccezione dei Grezzoni, che possono mostrare come anisotropia più evidente la superficie di stratificazione. La foliazione principale è stata riconosciuta fin dai primi studi di geologia strutturale nell'area come una scistosità da continua a spaziata con i caratteri di una crenulazione (Carmignani et al., 1975) ed assimilata, nella letteratura più recente (Costagliola et al., 1998; Conti et al., 2005; Biagioni et al., 2016), alla foliazione D2 di Carmignani & Kligfield (1990). Parallelamente a questa foliazione principale vengono trasposti i contatti formazionali con significative elisioni tettoniche, attraverso le quali, ad esempio, le filladi inferiori paleozoiche vengono giustapposte ai diversi termini triassici (Grezzoni), Giurassici (Marmi), Cretacei (Cipollino) e Terziari (Pseudomacigno).

La struttura geometricamente più bassa è rappresentata dai Grezzoni che affiorano nei fondovalle del Canale delle Piastre e del Canale dei Molini a nord dei Molini di Sant'Anna. Seguendo Carmignani et al. (2002) e Conti et al. (2010), questi Grezzoni, la cui base è stata riconosciuta soltanto in alcuni sondaggi profondi realizzati per scopi minerari, sono considerabili come il prolungamento meridionale del livello di Grezzoni che affiora nel versante nord del M. Rocca e raggiunge il fondovalle del Torrente Vezza nella zona di pontestazzemese-La Risvolta.

Dall'alveo del Canale dei Molini (Torrente Baccatoio) verso l'alto si incontrano vari termini della successione metasedimentaria separati da contatti tettonici sin-metamorfici, paralleli alla foliazione principale. I termini che compongono questa successione laminata sono i Grezzoni, a cui seguono Marmi, un esiguo spessore di Calcescisti e Cipollini ed infine metarenarie attribuibili allo Pseudomacigno. Nella parte orientale della finestra tettonica, i Marmi e i Cipollini sono completamente mancanti e lo Pseudomacigno si trova a diretto contatto con i Grezzoni del fondovalle.

Al di sopra di questa serie laminata poggiano, sempre con contatto tettonico, le Filladi Inferiori conosciute in letteratura come "Parautoctono di Sant'Anna" (Carmignani et al., 1975 - cfr. Unità di Fornovolasco-Panie, Costagliola et al., 1994 e bibl.); a queste sono associati lenti di Grezzoni affioranti sia alla base che al tetto. La sezione meglio esposta del contatto tra Filladi e successione sottostante si colloca a valle della sorgente La Vite (Figura 2.2). In questa zona i Grezzoni, che affiorano in alveo del Torrente Baccatoio, mantengono una stratificazione sub-orizzontale e passano lateralmente alle Filladi, quest'ultime caratterizzate da una foliazione con forte immersione verso sud-ovest. Le dolomie dei Grezzoni sono separate dalle filladi paleozoiche attraverso una lente di metaconglomerati attribuibili al Verrucano.

Salendo verso l'abitato di Sant'Anna di Stazzema, sia la giacitura della foliazione principale sia i contatti tettonici tendono ad assumere pendenze minori. La foliazione principale, misurata sia nelle filladi paleozoiche che nei termini della copertura, ha una direzione media appenninica, con immersioni verso sud-ovest in quasi tutta la finestra tettonica (Figura 2.7).

2.1.3. Strutture fragili tardive

Le strutture legate alla tettonica fragile tardiva (vedi paragrafo 2.1.1) rivestono un ruolo molto importante nell'ambito della tematica oggetto di studio.

Le strutture deformative fragili (faglie e fratture ad esse associate) hanno un ruolo primario nel controllo dell'assetto morfostrutturale dell'area. Ad esse, inoltre, si collegano in modo diretto o

indiretto gran parte delle sorgenti nell'area di indagine (Figura 2.2) e ad esse è collegabile la gran parte dei processi di infiltrazione e percolazione dell'acqua in litotipi altrimenti poco o per niente permeabili (Figura 2.8).

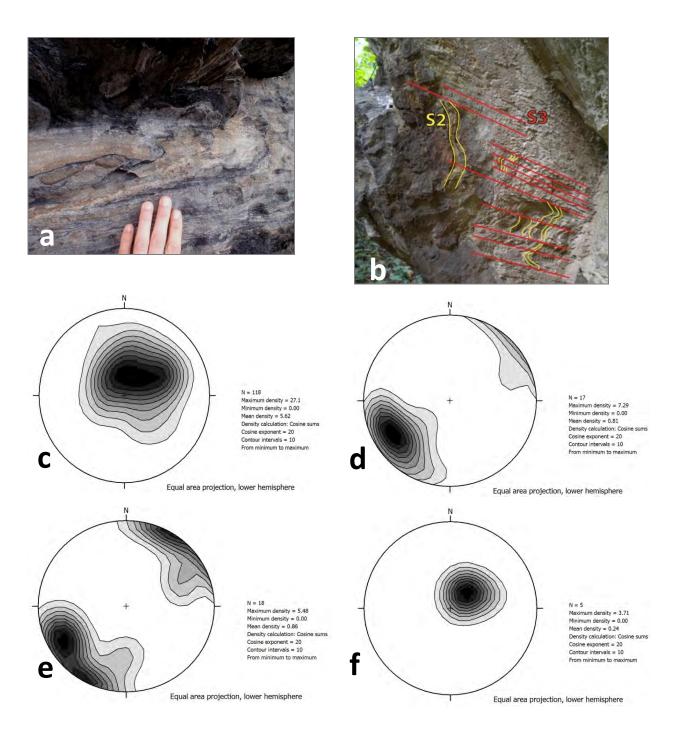


Figura 2.7. a) Pieghe isoclinali nello Pseudomacigno; b) foliazioni sovrapposte nelle filladi paleozoiche; c) stereogramma equi-area che mostra il *contouring* dei poli della foliazione principale in tutta l'area della finestra tettonica; d) *contouring* della lineazione di estensione; d) *contouring* degli assi delle pieghe isoclinali; f) *contouring* dei poli della foliazione tardiva.

Si tratta di faglie ad alto angolo, osservabili sia nelle unità non metamorfiche che in quelle metamorfiche. Le faglie a maggior rigetto sono quelle a direzione appenninica, che delimitano in alcuni casi gli affioramenti di unità metamorfiche. Le faglie all'interno degli affioramenti di unità metamorfiche presentano invece rigetto osservabile o stimabile come trascurabile (alla scala cartografica 1:10.000), caratteristica questa in accordo con quanto documentato a scala regionale in tutte le Alpi Apuane (Molli et al., 2015 e bibliografia relativa).

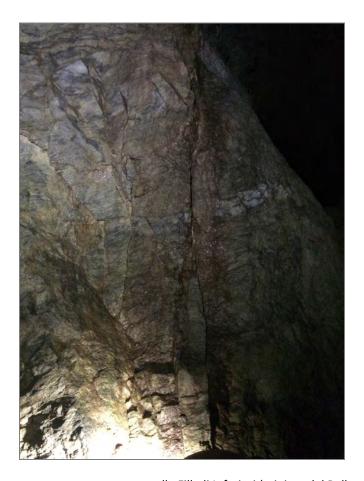


Figura 2.8. Faglia con componente trascorrente nelle Filladi Inferiori (miniera del Pollone). Tali discontinuità, frequentemente in connessione con l'acquifero carbonatico sovrastante, costituiscono vie preferenziali di infiltrazione dell'acqua, attribuendo una permeabilità secondaria significativa a litotipi altrimenti poco permeabili/impermeabili.

In questo studio sono state cartografate e rappresentate due tipologie di strutture: i) quelle individuate su base geologico-strutturale e morfo-strutturale, in cui è stato possibile osservare in almeno una località elementi strutturali che ne caratterizzano l'architettura e la cinematica; ii) strutture che, per le condizioni generali di affioramento non sempre ottimali, sono state caratterizzate ed individuate soltanto su base morfostrutturale o sull'interpretazione di foto aeree o satellitari (faglie tracciate su base geologica/morfologica), oppure sulla base degli assetti geologico-cartografici.

La prima tipologia di strutture in genere si caratterizza per la presenza di un nucleo (con spessore variabile da decimetrico a metrico, associato a cataclasiti e brecce di faglia) confinato tra superfici di scivolamento principale, sulle quali spesso è stato possibile osservare indicatori di movimento e quindi definirne le caratteristiche cinematiche. Le misurazioni delle superfici principali sono state elaborate attraverso proiezioni stereografiche, diagrammi a rosa e statistici ed analizzati in termini cinematici (diagrammi P/T).

Sulla base delle caratteristiche geometriche, le strutture nell'area di indagine possono essere suddivise in quattro gruppi:

- 1) faglie trascorrenti e normali con direzione anti-appenninica;
- 2) faglie normali a direzione appenninica;
- 3) faglie normali con direzione est-ovest;
- 4) faglie normali a direzione nord-sud.

Le strutture appartenenti al gruppo (1) sono rappresentate da strutture a direzione nord-est/sudovest (Figura 2.9) e cinematica dominante trascorrente, anche se non mancano strutture con
cinematica di tipo normale (Figura 2.10g). Tra le strutture principali appartenenti al gruppo (1) è
da segnalare la struttura che controlla l'alto corso del Torrente Baccatoio (Canale dei Molini) a
monte dei Molini di Sant'Anna. Già segnalata da Orberger nel 1985, questa struttura è osservabile
nel suo nucleo principale e lungo alcune strutture associate lungo il sentiero di fondovalle. Sistemi
di vene a fluorite osservabili nelle Dolomie nella zona di Buca dell'Angina risultano
cinematicamente associabili a questa struttura.

Le strutture del gruppo (2) sono le più rappresentate nell'area di studio. Si tratta di faglie a direzione appenninica e tra queste una delle più importanti è la faglia della Culla (Figure 2.1, 2.2, 2.10a). Questa struttura si estende per circa 1.6 km passa per la terminazione meridionale della Finestra Tettonica di Sant'Anna. Essa ha un forte riscontro negli assetti morfo-strutturali dell'area, determinando una marcata rottura di pendio appena a sud della località La Culla, dove sono evidenti strutture pervasive fragili (faglie minori e cataclasiti) sviluppate a spese del "protolite" qui rappresentato da cataclasiti e brecce cataclastiche GROb. A questa struttura, con immersione verso ovest e rigetto verticale stimabile attorno a 100 m, è associata una faglia antitetica con immersione a est e rigetto verticale stimabile attorno a circa 80 m, passante lungo l'allineamento M. Colegno-M. Rose (Figure 2.1, 2.2). Queste due strutture determinano l'abbassamento dei livelli

di cataclasiti GROb nella valle del Canale di Fondo e quindi la loro giustapposizione alle unità metamorfiche: Unità delle Apuane a nord e Unità di Massa a sud.

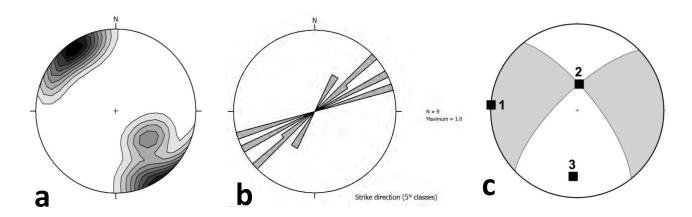


Figura 2.9. Faglie trascorrenti con direzione antiappenninica: a) contouring dei poli delle faglie principali; b) diagramma a rosa con classi di direzione ogni 10°; c) diagramma P/T che mostra la cinematica delle faglie trascorrenti.

Lungo le due dorsali a sud di La Culla e tra il M. Colegno e il M. Bacci il corrispondente rigetto può essere dedotto dal contatto delle brecce carbonatiche attribuibili al Calcare Cavernoso con le brecce GROb. Strutture minori nella zona di danneggiamento della faglia della Culla, sia nel footwall che nell'hangingwall, si caratterizzano per le cinematiche prevalentemente dirette con subordinati movimenti trascorrenti sinistri.

Il sistema di faglie appenniniche ha come struttura limite verso ovest la faglia bordiera sepolta che delimita i rilievi apuani dalla pianura versiliese ed esposta in una sua struttura di *footwall* in maniera ben evidente nella cava a Ponte Baccatoio (qui denominata faglia del Ponte Baccatoio (Figura 2.10f). La faglia, con direzione N174 ed immersione di 64° verso sud-ovest, è caratterizzata da una superficie principale di scivolamento con strie lungo la massima pendenza osservabile all'interno di una zona di danneggiamento larga più di 100 m.

Per le faglie del gruppo (3) (normali a direzione ovest-est - Figura 2.9g) e quelle del gruppo (4) (normali a direzione nord-sud) è stato possibile raccogliere pochi dati. Entrambi i gruppi di strutture possono essere interpretate a scala regionale come *splay* delle strutture a direzione appenninica (vedi Figura 2.1).

La cronologia relativa tra i sistemi di faglie (1) e (2+3+4) sono ben individuabili sulla base delle relazioni di sovrapposizione (Figure 2.1, 2.2). Le faglie trascorrenti e normali con direzione antiappenninica sono precedenti alle strutture a direzione appenninica.

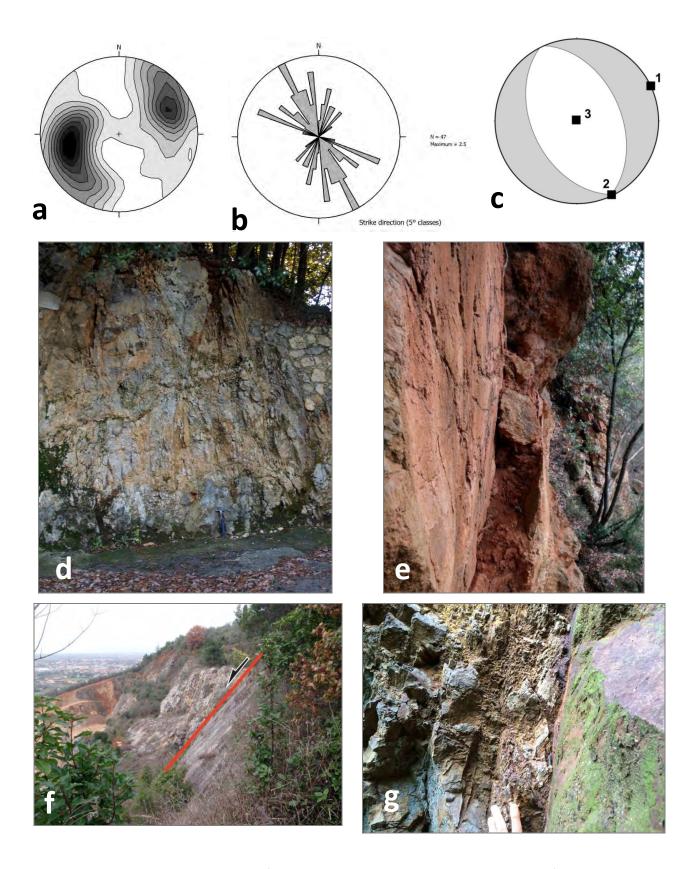


Figura 2.10. Faglie normali appenniniche: a) diagramma a rosa con classi di direzione ogni 10°; b) contouring dei poli delle superfici principali; c) diagramma P/T; d) zona di danneggiamento della faglia della Culla; e) superficie principale della faglia M. Colegno - M. Rose; f) faglia bordiera a Ponte Baccatoio; g) dettaglio del nucleo e della zona di danneggiamento della faglia est-ovest osservabile nelle filladi paleozoiche a nord dei Molini di Sant'Anna.

2.1.4. Bibliografia del paragrafo 2.1

Di seguito si riportano i riferimenti bibliografici citati nel paragrafo 2.1 per un maggiore approfondiimento dei temi.

Biagioni C., Dini A., Orlandi P., Moëlo Y., Pasero M., Zaccarini F. (2016) - Lead-Antimony Sulfosalts from Tuscany (Italy). XX. Members of the Jordanite–Geocronite Series from the Pollone Mine, Valdicastello Carducci: Occurrence and Crystal Structures. Minerals, 6, 15; doi:10.3390/min6010015

Carmignani L., Dessau G., Duchi G. (1975) - Una mineralizzazione sin-tettonica: il giacimento di Valdicastello (Alpi Apuane). Boll.Soc.Geol.It., 94(4), 725-758.

Carmignani, L., and Kligfield, R. (1990) - Crustal extension in the northern Apennines: the transition from compression to extension in the Alpi Apuane Core Complex: Tectonics, v. 9, p. 1275–1303, doi:10.1029/ TC009i006p01275.

Carmignani, L., F. A. Decandia, P. L. Fantozzi, A. Lazzarotto, D. Liotta, and M. Meccheri (1994) - Tertiary extensional tectonics in Tuscany (northern Apennines, Italy), Tectonophysics, 238, 295 – 315.

Ciarapica G., Passeri L. (1978) - I Grezzoni del nucleo apuane: nascita, sviluppo e morte di una piattaforma carbonatica iperalina. Boll. Soc. Geol. It., 97(4), 527-564,

Carmignani L., Meccheri M., Conti P., Massa G., Patacca E., Scandone P. (2009) - Note Illustrative della Carta Geologica d'Italia alla scala 1:50.000. Foglio 249 Massa-Carrara.

Ciarapica G., Zaninetti L. (1984) - Foraminifères et biostratigraphie dans le Trias superieur de la série de La Spezia (Dolomies de Coregna et Formation de La Spezia, nouvelle formations) Appennin septentrionel. Rev. de Paléontologie, 3: 117-34, Genéve.

Cinquini I. (2011) - Geologia del Mont'Alto (Alpi Apuane Meridionali). Università di Pisa, Tesi di Laurea triennale inedita, 82 pp.

Conti P., Costantini A., Decandia F.A., Elter F.M., Gattiglio M., Lazzarotto A., Meccheri M., Pandeli E., Rau A., Sandrelli F., Tongiorgi M., Di Pisa A. (1991) - Structural frame of the Tuscan Paleozoic: a

review. Boll. Soc. Geol. It., 110: 523-541, Roma.

Conti P., Carmignani L., Massa G., Meccheri M., Fantozzi P.L., Masetti G., Rossetto R. (2005) - Note Illustrative della Carta Geologica d'Italia alla scala 1:50.000. Foglio 260 Viareggio.

Costagliola, P., Benvenuti, M., Lattanzi, P., and Tanelli, G. (1998) - Metamorphic barite-pyrite (Pb-Zn-Ag) veins at Pollone, Apuane Alps, Tuscany: vein geometry, geothermobarometry, fluid inclusions and geochemistry: Mineralogy and Petrology, v. 62, p. 29–60, doi:10.1007/BF01173761.

Elter P. (1975) - Introduction à la géologie de l'Apennin septentrional. Bull. Soc. Géol. France, 17, 956-962.

Elter, P., Marroni, M., Molli, G., Pandolfi, L., (1991) - Le caratteristiche stratigrafiche del complessodi M.Penna/Casanova, Alta Val di Trebbia, Appennino settentrionale. Atti Ticinensi di Scienze della Terra, 34, 97-106.

Fellin, M.G., Reiners, P.W., Brandon, M.T., Wuthrich, E., Balestrieri, M.L., and Molli, G. (2007) - Thermochronologic evidence for exhumational history of the Alpi Apuane metamorphic core complex, northern Apennines, Italy: Tectonics, v. 26, p. TC6015, doi:10.1029/2006TC002085.

Gattiglio, M., Meccheri, M., Tongiorgi, M. (1989) - Stratigraphic correlation forms of the Tuscan Palaeozoic basement. Rendiconti della Società Geologica Italiana 12, 247–257.

Kligfield R., Hunziker J., Dallmeyer R.D., and Schamel S. (1986) - Dating of deformational phases using K-Ar and 40Ar/39Ar techniques: results from the Northern Apennines: Journal of Structural Geology, v. 8, p. 781–798, doi:10.1016/0191-8141(86)90025-8.

Mancini S., Massa G., Lorenzoni V., Meccheri M., Molli G. (2011) - I marmi Bardigli Fioriti della Versilia. AIGA Volume Abstracts.

Meccheri M., Molli G., Conti P., Blasi P., Vaselli L. (2006) - The Carrara Marbles (Alpi Apuane, Italy): a gelogical and economical updated review Z. dt. Ges. Geowiss, 158/4, 719-735.

Molli, G., Giorgetti, G., and Meccheri, M. (2002) - Tectono-metamorphic evolution of the Alpi Apuane Metamorphic Complex: new data and constraints for geodynamic models: Bollettino Società Geologica Italiana, Volume Speciale no.1, p.789–800.

Molli G. (2008) - Northern Apennine-Corsica orogenic system: an updated review, in Siegesmund, S., Fügenschuh, B., Froitzheim, N., eds., Tectonic Aspects of the Alpine-Dinaride-Carpathian System: Geological Society of London Special Publication 298, p. 413–442.

Molli G. (2012) - Deformation and fluid flow during underplating and exhumation of the Adria continental margin: A one-day field trip in the Alpi Apuane (northern Apennines, Italy). The Geological Society of America Field Guide 28.

Molli G., Doveri M., Manzella A., Bonini L., Botti F., Menichini M., Montanari D., Trumpy E., Ungari A., Vaselli L. (2013) - Surface-subsurface structural architecture and groundwater flow of the Equi Terme hydrothermal area, Northern Tuscany Italy, in «Ital.J. Geosci. doi», 10.3301/IJC.2014.25.

Molli G., Torelli L., Storti F. (2016) - The 2013 Lunigiana (Central Italy) earthquake: seismic source analysis from DInSar and seismological data, and geodynamic implications for the northern Apennines. A discussion. Tectonophysics 668–669 (2016) 108–112.

Orberger B. (1985) - Les gisements de barityne-oxydes de Fer de la Region de S.Anna (Alpes Apuanes, Toscane, Italie). These Doct., Nancy, 264.

Trevisan L. (1955) - Il Trias della Toscana e il problema del Verrucano triassico. Atti Soc.Tosc.Sci.Nat Mem.Ser. A 62: 5-39.

Trevisan L., Dallan L., Federici P.R., Giglia G., Nardi R., Raggi G. (1971) - Note illustrative della Carta Geologica d'Italia in scala 1:100.000. Foglio 96 – Massa pp57. Servizio Geologico d'Italia. Roma.

Passeri L. (1974) L'ambiente deposizionale della Formazione Evaporitica nel quadro della paleogeografia del Norico tosco-umbro-marchigiano. Boll.Soc.Geol.It., 94(1-2): 231-268.

Patacca E., Scandone P., Conti P., Mancini S., Massa G. (2013) - Ligurian-derived olistostrome in the Pseudomacigno Formation of the Stazzema Zone (Alpi Apuane, Italy). Geological implications at regional scale. Ital. J. Geosci. (Boll. Soc. Geol. It.), 132 (3), 463-476. doi: 10.3301/IJG.2013.05.

2.2. Quadro della circolazione idrica sotterranea nel bacino del Torrente Baccatoio

2.2.1. Caratteri generali del bacino

Come già evidenziato nella Relazione di Breve Periodo, l'assetto idrostrutturale e idrogeologico del bacino del Torrente Baccatoio è quello tipico dei bacini delle Alpi Apuane, con acquiferi generalmente contenuti nei litotipi carbonatici caratterizzati da elevata permeabilità per fratturazione e carsismo.

L'elevata piovosità (verosimilmente oltre 2000 mm/anno alle quote più elevate del bacino), la permeabilità medio-alta delle rocce carbonatiche e l'assetto idrostrutturale favorevole, tale da consentire l'immagazzinamento e il flusso di abbondanti quantitativi di acque sotterranee, rendono gli acquiferi carbonatici apuani di primaria importanza in termini di risorse idriche per l'approvvigionamento idropotabile di gran parte della Toscana nord-occidentale. Ciò in relazione al fatto che, oltre a originare numerose sorgenti anche di elevata portata, contribuiscono significativamente alla alimentazione degli acquiferi della pianura apuo-versiliese con trasferimenti idrici sotterranei diretti e indiretti (per mezzo dei corsi d'acqua e relativi conoidi). Tale prerogativa caratterizza a tutti gli effetti anche il bacino del Torrente Baccatoio. Tuttavia, la presenza in quest'area di mineralizzazioni e la loro coltivazione per mezzo di molteplici aree minerarie estrattive, successivamente abbandonate (si riveda in proposito la descrizione delle aree minerarie già esposta nella Relazione di Breve Periodo), hanno avuto ripercussioni inevitabili sulle caratteristiche delle acque, con pesanti ricadute sulla loro qualità.

2.2.2. Assetto idrogeologico del bacino del Torrente Baccatoio

Sulla base del quadro geologico aggiornato dagli studi effettuati nell'ambito del presente Accordo di Collaborazione e descritti nel par. 2.1, si delinea un quadro idrogeologico che precisa, ma sostanzialmente conferma, quanto era già stato indicato nella Relazione di Breve Periodo.

Il bacino del Torrente Baccatoio è contraddistinto dalla presenza di due complessi idrogeologici carbonatici principali (definiti in passato "Sistema idrogeologico di Valdicastello", con soglia di permeabilità in corrispondenza del contatto con le formazioni dell'Unità di Massa nei pressi di Valdicastello), caratterizzati da una permeabilità secondaria elevata per fessurazione e carsismo. Il principale di questi complessi è costituito dalla successione metasedimentaria carbonatica dell'Unità delle Apuane, in particolar modo dalle formazioni dei Grezzoni (GRE) e dei Marmi (MAA). Tale complesso acquifero trova la sua base impermeabile o a limitata permeabilità principalmente nella formazione delle Filladi inferiori (FAF) e localmente anche dei Porfiroidi (PRS),

che formano il basamento paleozoico apuano. Il complesso acquifero formato da Grezzoni e Marmi nell'insieme non mostra una estesa superficie di affioramento all'interno del bacino del Torrente Baccatoio, collocandosi nel nucleo della Finestra Tettonica di Sant'Anna; esso ricopre tuttavia importanza regionale, poiché mostra continuità laterale nei bacini contigui nordoccidentali, non escludendo relazioni con l'importante complesso carsico del M. Corchia. Ciò lo rende un acquifero di estremo interesse, capace di trasferimenti di cospicui apporti idrici del sottosuolo, come del resto confermano anche due importanti sorgenti dell'area di studio, Molini di Sant'Anna (VSMSA) e La Vite (VSVIT), almeno in parte drenanti questo acquifero, come meglio specificato in seguito.

Il secondo importante complesso idrogeologico è rappresentato da formazioni appartenenti alla Falda Toscana, che nell'area sono riconducibili essenzialmente al Calcare Cavernoso (CCA) e brecce tettoniche poligeniche associate, unitamente alle Cataclasiti con clasti metamorfici (GRO) e, secondariamente, ai sovrastanti Calcari a Rhaetavicula contorta (RET) unitamente alle sottostanti Cataclasiti ad elementi di calcari (GRP). Questa successione idrogeologica è generalmente dotata di permeabilità elevata, principalmente per fratturazione e carsismo, anche se gli spessori più ridotti la rendono un acquifero dalle potenzialità leggermente inferiori rispetto all'acquifero della serie metamorfica. Il substrato impermeabile, o di scarsa permeabilità, è costituito da termini filladici e sericitici delle unità tettoniche metamorfiche. La circolazione idrica ospitata in questo complesso idrogeologico trova recapito in numerose sorgenti. Buona parte di esse è localizzata in corrispondenza del contatto (tettonico) tra l'acquifero carbonatico e il sottostante basamento poco permeabile, al nucleo della Finestra Tettonica di Sant'Anna. Generalmente si tratta di scaturigini di buona qualità ma di modesta portata (inferiore al L/s), in taluni casi a carattere intermittente che nel corso della stagione estiva porta all'annullamento della portata. Le emergenze che mostrano portate più significative si identificano nelle Tre Fontane (VSTRF) e, principalmente, nelle tre sorgenti Moresco (Moresco Galleria - VSMOG, Moresco Alta - VSMOA e Moresco Sondaggio - VSMOS).

Un terzo sistema acquifero di interesse è rappresentato dai depositi alluvionali di fondovalle che, a partire dall'abitato di Valdicastello, si sviluppano su tutto il settore medio/medio-basso del bacino per poi immettersi con continuità nella successione della piana costiera alla quale si raccordano tramite depositi di conoide. Questo sistema è caratterizzato da una dominante componente grossolana (ciottoli, ghiaie e sabbia grossolana) con matrice fine più o meno abbondante ed è

dotato quindi di permeabilità primaria (per porosità) di grado medio/alto. Esso risulta attualmente sfruttato da una serie di pozzi privati in parte esaminati anche nell'ambito del presente studio. La Tabella 2.1 mostra una classificazione qualitativa di tutte le formazioni e di tutti i depositi affioranti nell'area di indagine (Figura 2.2) sulla base del grado di permeabilità relativo associato ad ogni litotipo, ottenuto integrando dati di letteratura con osservazioni dirette di campagna.

Formazione/Deposito	Tipo di permeabilità	Grado di permeabilità	
Grezzoni, Marmi, Calcare Cavernoso, Cataclasiti con	Fratturazione e	Alta o molto alta	
clasti metamorfici, Cataclasiti ad elementi di calcari	carsismo	Alta o molto alta	
Calcari a Rhaetavicula contorta, Calcare Selcifero,	Fratturazione e	Media o medio-alta	
Calcare Massiccio	carsismo		
Pseudomacigno, Macigno, Flysch di Ottone	Fratturazione	Medio-bassa a bassa	
Formazione di Monte Folgorito, Filladi Inferiori,	Fratturazione	Poco permeabili o	
Porfiroidi, Scisti Sericitici	riutturuzione	impermeabili	
Depositi alluvionali	Porosità	Medio-alta	
Depositi di versante/frana	Porosità	Bassa o media	

Tabella 2.1. Classificazione in base al grado di permeabilità delle principali formazioni e dei depositi presenti nel bacino del Torrente Baccatoio.

Utilizzando il criterio dell'attribuzione di un grado di permeabilità qualitativo a ciascuna formazione geologica, è stata elaborata la Carta Idrogeologica del bacino del Torrente Baccatoio riportata in Figura 2.11. L'importanza di disporre di una carta idrogeologica risiede nel fatto di poter visualizzare immediatamente le caratteristiche delle rocce e dei terreni di una determinata area in relazione alla possibilità di assorbire o meno l'acqua meteorica, quindi di individuare potenziali aree di assorbimento e alimentazione delle risorse idriche di sottosuolo. Inoltre, la realizzazione di sezioni idrogeologiche permette di verificare i possibili percorsi delle acque, ipotizzare rapporti tra strutture idrogeologiche, verificare o ipotizzare aree di alimentazione; tutte informazioni che concorrono, unitamente ad altri studi (monitoraggio delle portate delle sorgenti e delle caratteristiche chimico-isotopiche delle acque) a fornire un modello idrogeologico di sottosuolo.

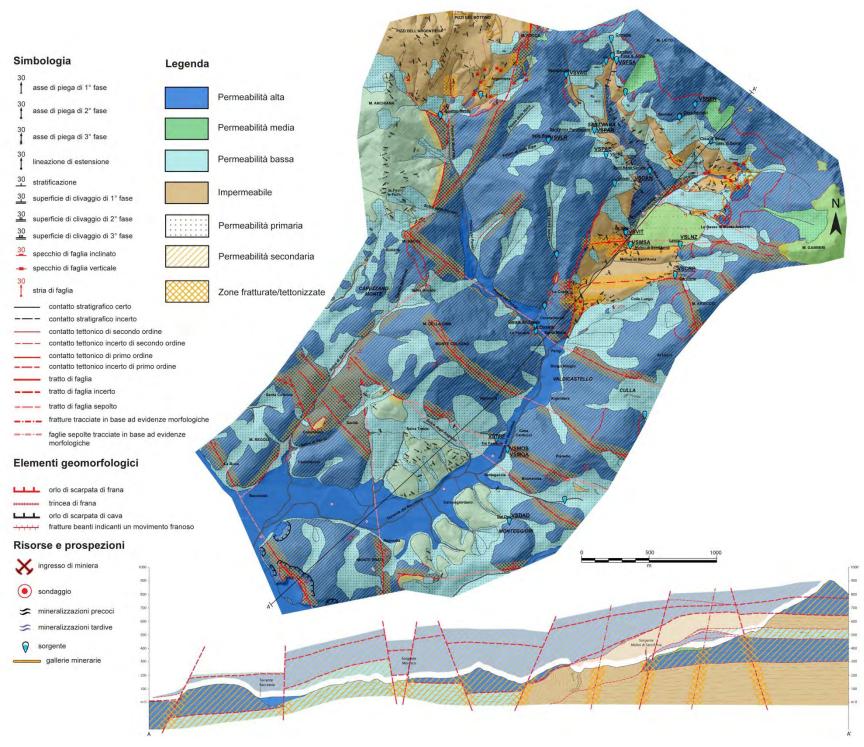


Figura 2.11. Carta idrogeologica del bacino del Torrente Baccatoio.

La carta mostra come nell'insieme il bacino presenti buone caratteristiche di permeabilità in affioramento. Il tipo di permeabilità dominante è per fratturazione, tipica di tutte le rocce presenti e talvolta accompagnata da carsismo per quelle carbonatiche, da ritenersi particolarmente elevata nelle zone contraddistinte da alto grado di tettonizzazione/fratturazione/carsificazione; quest'ultime rappresentano situazioni di concentrata infiltrazione e allo stesso tempo, laddove associate a faglie ad alto angolo, vie preferenziali della circolazione idrica sotterranea che possono condizionare il generale reticolo di drenaggio.

Piuttosto diffusi risultano anche i materiali a porosità primaria associati a depositi di versante e/o di frana. Essi sono caratterizzati generalmente da permeabilità bassa, in quanto tali depositi, derivando principalmente da rocce di natura carbonatica o filladica, sono complessivamente di matrice limo-argillosa; la permeabilità di tali depositi assume valori medi in corrispondenza di falde detritiche presenti nel settore nord-orientale del bacino, in cui è stata riscontrata una granulometria più grossolana. Un caso particolare è rappresentato dalla grande frana in roccia che si sviluppa in sinistra idrografica del Canale dei Molini a monte della sorgente Molini di Sant'Anna. Questa è da ritenersi a permeabilità media di tipo misto per porosità e fratturazione, essendo costituita da materiale roccioso dislocato e fratturato con una copertura più o meno spessa di materiale detritico eterometrico. In testata di frana si rinvengono estese fratture di trazione beanti di larghezza metrica ed estensione decametrica (Figura 2.12), che permettono alti tassi di assorbimento di acque meteoriche.

Figura 2.12. Particolari delle estese fratture beanti in testata del grosso corpo di frana di Molini di Sant'Anna, che costituiscono importanti zone di assorbimento delle acque meteoriche e di locale ruscellamento.

La carta idrogeologica (Figura 2.11) mette bene in evidenza come il Torrente Baccatoio, per la maggior parte del suo sviluppo, scorra su litotipi ad elevata permeabilità. Questo aspetto determina la possibilità di scambi idrici tra acque di deflusso superficiale e sotterraneo, con possibili ripercussioni sulla qualità delle acque sotterranee stesse in considerazione delle caratteristiche chimico-fisiche del torrente che riceve anche le acque di alcune gallerie minerarie. Un ulteriore aspetto da sottolineare è la possibilità di diffusi travasi idrici sotterranei dai complessi idrogeologici che si sviluppano sui rilievi verso quello poroso delle alluvioni di fondovalle.

Nella carta sono anche riportate le principali sorgenti. Tra queste, come accennato precedentemente, le più importanti (con portate medie anche di alcune decine di L/s), sono le già citate Molini di Sant'Anna (VSMSA, Figura 2.13), La Vite (VSVIT) e le tre sorgenti Moresco nel loro insieme (VSMOG, VSMOS e VSMOA, Figura 2.14).

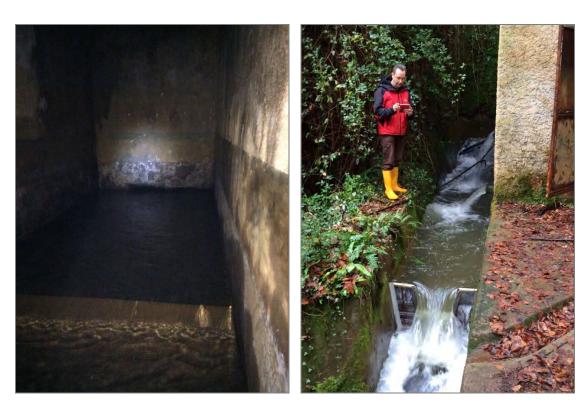


Figura 2.13. Sorgente Molini di Sant'Anna (VSMSA): A sinistra: interno del bottino di presa completamente allagato durante un evento di piena; a destra: il canale di scolo della sorgente.

Le prime due emergenze (VSMSA e VSVIT) sono perlopiù rappresentative di una circolazione idrica ipogea che si sviluppa nel complesso idrogeologico definito dall'insieme Marmi-Grezzoni. Contributi quantitativamente secondari sono comunque possibili dai materiali rimaneggiati, con particolare riferimento a quelli che compongono i corpi di frana più estesi (Figura 2.2) presenti nelle zone immediatamente a monte in particolare per VSMSA.

Figura 2.14. A sinistra: Sorgente Moresco Galleria (VSMOG) con all'interno il tubo di captazione della Moresco Sondaggio (VSMOS); a destra: interno della sorgente Moresco Alta (VSMOA).

La zona di emergenza risulta strutturalmente complessa, con la presenza di materiali filladici scarsamente permeabili che si sovrappongono tettonicamente ai Grezzoni, determinando uno sbarramento nei confronti della circolazione idrica sviluppata in quest'ultimi ed agendo come forzante principale per l'emergenza delle acque (Figure 2.2, 2.11). La localizzazione delle due sorgenti è tuttavia condizionata anche da altri fattori, quali la morfologia, la presenza di faglie e la diffusa fratturazione (Figura 2.11) spesso associata alla presenza delle faglie stesse. L'elevato grado di tettonizzazione/fratturazione/carsificazione determina condizioni di elevata permeabilità su tutta la zona prossima alle due sorgenti. Questo contesto, unitamente alle proprietà idrodinamiche intrinseche al complesso Marmi-Grezzoni (condizionate da un grado di carsismo generalmente significativo), fanno sì che le sorgenti siano caratterizzate da un'elevata variabilità stagionale delle portate, nonché da repentini picchi di portata in occasione di piogge significative, come verrà illustrato in seguito.

Le sorgenti Moresco drenano invece circuiti che si sviluppano in gran parte nel Calcare Cavernoso. Tra queste, come suggerito dalle temperature relativamente elevate e da un chimismo tendenzialmente solfato-calcico, la sorgente Moresco Galleria (VSMOG, attualmente l'unica captata dal gestore idrico) risulta l'espressione di una componente di circolazione che si approfondisce significativamente all'interno di questo complesso idrogeologico. L'origine di tale componente così come la sua risalita, almeno parziale, alla VSMOG, sono con ogni probabilità da rilegare ai sistemi di faglia ad alto angolo, e associata fratturazione, che si sviluppano nella parte mediana del bacino del Baccatoio, trasversalmente alla valle (Figura 2.11). Gli altri due punti d'acqua, VSMOS e VSMOA, sono da ritenersi essenzialmente, se non esclusivamente, alimentati da una circolazione ipogea più superficiale, che almeno in parte, sulla base di prove di tracciamento

fatte eseguire dall'allora gestore idrico Versilia Acque (VEA) (si veda in proposito la Relazione Tecnica "Progetto per l'adeguamento funzionale e protezione dall'inquinamento delle Sorgenti Moresco in Valdicastello", a cura di Geoscienze s.r.l. – 23.06.1997), sembra ricevere contributi dalle acque del Torrente Baccatoio. Le misure di portata eseguite lungo l'asta del torrente il 26 gennaio 2016 nell'ambito del presente studio nel tratto compreso tra la miniera del Pollone e Ponte di Regnalla (Figure 2.15, 2.16) sono congruenti con tali risultati, nonché con quanto detto in precedenza sulla base della carta idrogeologica elaborata.

Figura 2.15. Misura di portata lungo il Torrente Baccatoio: a) esecuzione delle misure in alveo; b) mulinello idraulico elettromagnetico in dotazione a IGG-CNR; c) esempio di restituzione dei dati.

Infatti, come si può osservare in Figura 2.16, nel tratto a monte delle sorgenti Moresco il torrente dimezza quasi la portata (da 53 a 28 L/s in circa 550 m, quasi 1 L/s ogni 20 m) procedendo verso valle proprio nel settore in cui è presente la formazione permeabile del Calcare Cavernoso, sub-affiorante al disotto di limitati spessori di alluvioni grossolane.

Relativamente al sistema acquifero che si sviluppa nei terreni alluvionali di fondovalle, anche in questo caso i dati a disposizione per il tratto indagato evidenziano il significativo ruolo del torrente in termini di alimentazione. Sempre in Figura 2.16 si osserva infatti come a valle delle sorgenti Moresco, che essendo in parte in scarico incrementano localmente le portate del corso d'acqua, il torrente ceda alle alluvioni quasi 20 L/s su un tratto di circa 700 m (pari a circa 1 L/s ogni 35 m). Queste osservazioni sono frutto di un solo giorno di rilievi; per avere un quadro più oggettivo sarebbe opportuno ripeterle più volte in condizioni idrodinamiche e climatiche differenti.

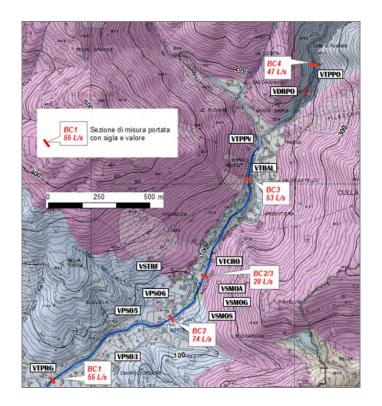


Figura 2.16. Tratti di misura della portata del Torrente Baccatoio relative al giorno 26.01.2016 in cinque tratti nella zona compresa tra la miniera del Pollone e Ponte di Regnalla.

Il possibile contributo alla falda acquifera contenuta nel materasso alluvionale da parte delle acque del torrente in questo settore era già stato evidenziato nella Relazione di Medio Periodo, sulla base del confronto tra i dati chimici delle acque torrentizie e di quelle prelevate da alcuni pozzi che insistono nelle alluvioni stesse. Sempre basandosi sui dati idrogeochimici, procedendo ancora verso valle, il materiale alluvionale risulta ricevere anche acque di travaso sotterraneo dalla formazione del Calcare Cavernoso fino all'ingresso nella piana costiera.

2.2.3. Considerazioni sull'idrodinamica del sistema sulla base dei dati di portata ed isotopici

Nella comprensione di un modello idrogeologico, un aspetto di fondamentale importanza è

rappresentato dallo studio quantitativo dei deflussi idrici superficiali e sotterranei. In un'area complessa sotto vari punti di vista (morfologico, geologico, idrogeologico) come quella del bacino del Torrente Baccatoio ciò può essere effettuato mediante il monitoraggio delle portate del corso d'acqua e delle sorgenti principali.

Per quanto riguarda il corso d'acqua, sono state effettuate soltanto alcune misure preliminari, come già riportato nel paragrafo precedente, con l'unico scopo di verificare le caratteristiche idrodinamiche del torrente con riferimento a perdite e guadagni idrici in relazione alle caratteristiche dell'alveo e ai rapporti con le sorgenti Moresco.

Specifiche misure di portata sono poi state effettuate sulla sorgente principale, ovvero Molini di Sant'Anna (VSMSA), e su due delle gallerie minerarie principali in termini di efflussi idrici, vale a dire la galleria Ribasso del Pollone (VDRPO) e la galleria Sant'Erasmo di M. Arsiccio (VDSRM).

2.2.3.1. Sorgente Molini di Sant'Anna

La sorgente Molini di Sant'Anna (VSMSA, Figura 2.17), come noto, è la più importante in termini di portate dell'intero bacino del Torrente Baccatoio e per tale motivo da tempo (la targa sul bottino di presa riporta l'anno 1951, ma locali testimonianze ne fanno risalire la captazione a periodi antecedenti) era stata captata, fino al momento in cui vi è stata rilevata la presenza di tallio.

Altro aspetto non secondario, anche in relazione alle caratteristiche idrodinamiche dell'acquifero sotteso alla sorgente e alla modalità di circolazione delle acque sotterranee, è il fatto che essa mostra una certa torbidità, talora estremamente rilevante (Figura 2.18), funzione anche degli apporti meteorici e quindi delle portate. La sorgente è stata poi messa in scarico a partire dal 23 settembre 2014 ed attualmente è esclusa dalla rete idropotabile dell'area.

La sorgente si colloca in sinistra idrografica del Torrente Baccatoio, nella zona in cui è denominato Canale dei Molini, alla quota di 312 m s.l.m. Osservando le Figure 2.2 e 2.11, la scaturigine si colloca al piede di un esteso corpo di frana in roccia e detrito, che include mega-blocchi di rocce mineralizzate a barite, pirite e idrossidi di ferro e manganese, oggetto anche di antiche coltivazioni a cielo aperto e in galleria.

Figura 2.17. A sinistra: esterno del bottino di presa della sorgente Molini di Sant'Anna (VSMSA); a destra: i tubi di scarico e troppo pieno durante un evento di piena (05.01.2016).

Figura 2.18. Le acque della sorgente Molini di Sant'Anna in alcuni momenti a caratteristiche diverse idrodinamiche e di torbidità: a) 09.02.2016; b) 26.01.2016; c) 30.12.2015; d) 05.01.2016 e) 10.02.2016; f) materiale depositato sulla paratia dello stramazzo il 30.12.2015; g) la venuta naturale della sorgente nelle rocce filladiche all'interno del bottino di presa, con la torbidità naturale ripresa il giorno 08.10.2015. Si tenga conto che l'acqua allo stramazzo è miscelata con l'acqua del Canal Buio, il quale apporta peraltro un quantitativo modesto rispetto alla sorgente.

Al fine di capire l'andamento dei deflussi idrici, nell'ambito di questo studio è stato realizzato e messo in opera (in data 02.12.2015) un apposito stramazzo, previa specifica richiesta inoltrata a GAIA s.p.a., che tuttora ha in concessione la sorgente, e ricevutone l'assenso. Uno stramazzo è una barriera opportunamente realizzata che viene posta ad ostacolo del deflusso idrico al fine di costringere l'acqua a passare attraverso una bocca realizzata con precise caratteristiche geometriche. Nel caso in questione, è stato predisposto uno stramazzo di materiale metallico del tipo "Cipolletti", con apertura trapezoidale. Lo stramazzo è stato collocato nella canaletta in cemento che drena le acque della sorgente (Figura 2.19). Ciò comporta che nella valutazione della portata della sorgente è inclusa una quota parte derivante dal deflusso idrico del Canal Buio, che si immette nella stessa canaletta in cemento, aggiungendosi alle portate dovute alla sorgente stessa. Il Canal Buio è un piccolo impluvio frequentemente asciutto e che si attiva in occasione di piogge

relativamente abbondanti. Da alcuni sopralluoghi effettuati, pare che dreni un settore prossimo alla sorgente Lenzo (VSLNZ), sicuramente il troppo pieno della sorgente, forse anche ulteriori venute coperte da detrito nei pressi della sorgente stessa. In data 26.01.2016, in condizioni idrodinamiche medie, è stata effettuata una misura manuale della portata sia allo stramazzo (sorgente+Canal Buio), sia del solo Canal Buio. A fronte di una portata di circa 35 L/s allo stramazzo, il Canal Buio immetteva un flusso di circa 0.65 L/s, pari a 1.9% della portata totale. Non sono state fatte altre osservazioni specifiche, ma è lecito ritenere che l'errore che si commette nella quantificazione totale delle portate si possa ritenere accettabile, considerando che il contributo del Canal Buio, ad eccezione dei periodi con piogge copiose, è stimabile in pochi punti percentuali (<5%).



Figura 2.19. Lo stramazzo predisposto all'uscita della sorgente Molini di Sant'Anna (VSMSA): a) schema costruttivo con indicazione delle portate in base al livello idrico raggiunto sull'apertura; b) dispositivo per l'alloggiamento della sonda per l'acquisizione dei dati in continuo; c) messa in esercizio.

La realizzazione dello stramazzo comporta di poter risalire alla misura della portata conoscendo la misura del livello idrico al di sopra della bocca geometrica; noto tale livello e nota la formula idraulica dello stramazzo, si risale alla portata. In particolare, la formula per il calcolo della portata (Q) per lo stramazzo Cipolletti in questione è la seguente:

$$Q = 1,86 \ l \ h^{\frac{3}{2}}$$

dove "l" è la larghezza della base dell'apertura trapezoidale ed "h" è l'altezza dell'acqua al di sopra dell'apertura stessa.

Per avere tuttavia un quadro più completo dell'andamento delle portate, immediatamente a monte dello stramazzo è stato collocato un misuratore automatico di tale livello, in modo da poter registrare in maniera continua, con frequenza di acquisizione di 15 minuti, le portate in uscita. Si tratta di una sonda multiparametrica di tipo CTD-Diver, distribuita da Ecosearch s.r.l. (Figura 2.20a), in grado di misurare, oltre al livello idraulico, anche temperatura e conducibilità elettrica dell'acqua. Poiché l'altezza del livello dell'acqua viene misurata in funzione della pressione idraulica esercitata sulla sonda stessa, e che tiene conto quindi anche della pressione atmosferica, al fine di depurare la misura da quest'ultima è stato collocato anche un Baro-Diver (Figura 2.20b), anch'esso distribuito da Ecosearch s.r.l., all'interno del bottino di presa della sorgente per la misura in continuo (frequenza di acquisizione di 15 minuti) del valore della pressione atmosferica. Periodicamente, quando possibile in funzione delle portate della sorgente, è sempre stata fatta una misura diretta del livello "h" e della portata anche manualmente (Figura 2.20c), cronometrando il tempo necessario a riempire un recipiente di volume noto, in modo da avere un controllo periodico dei dati registrati dallo strumento.

Durante i sopralluoghi, è stato anche osservato come il bottino di presa abbia un'ulteriore uscita sul retro (Figura 2.21), che pare indipendente dall'attuale bottino di presa, probabilmente attribuibile ad un'opera precedentemente realizzata (ad esempio la struttura presente prima del 1951, ma ciò andrebbe confermato). Tale uscita, che scarica ancora nella canaletta dove confluisce anche il Canal Buio, si attiva solo in condizioni idrodinamiche particolari, ovvero in seguito ad abbondanti piogge e quindi portate sorgentizie. Ciò potrebbe essere imputabile al fatto che durante periodi di copiose precipitazioni la superficie piezometrica si innalza, andando ad attivare questa uscita, posta a quota più alta dell'attuale uscita della scaturigine.

Figura 2.20. a) Sonda multiparametrica CTD-Diver per la misura di livello idraulico, temperatura e conducibilità elettrica dell'acqua a monte dello stramazzo; b) sonda Baro-Diver; c) misurazione manuale della portata.

Figura 2.21. Apertura (indicata con la freccia rossa) sul retro della sorgente Molini di Sant'Anna che si attiva in particolari momenti di ricarica: a) in assenza di deflusso dopo periodi di scarse piogge; b) in seguito a piogge copiose; c) interno del foro e rocce di natura filladica fratturate da cui emerge l'acqua.

Durante il periodo monitorato, avviato nel mese di dicembre 2015 e tuttora in corso, i dati raccolti hanno permesso di confermare quanto già era stato visto durante i vari sopralluoghi sporadici effettuati fin dall'inizio di questo studio, ovvero la elevata variabilità delle portate in funzione delle piogge e la rapidità della risposta del sistema acquifero sotteso alla sorgente alle diverse condizioni idrodinamiche. In particolare, in Figura 2.22 è riportato il cronogramma delle misure in continuo e quelle effettuate in occasione di vari sopralluoghi delle portate della sorgente Molini di Sant'Anna (VSMSA), unitamente ai valori di precipitazione giornaliera ottenuti come media della pioggia misurata nelle 5 stazioni pluviometriche situate dentro o appena al di fuori dello spartiacque del bacino del Torrente Baccatoio (Pietrasanta, Pomezzana, Camaiore I Frati, Vallelunga, Gallena – vedi Relazione di Medio Periodo per l'ubicazione e le specifiche delle stazioni). È opportuno precisare che lo stramazzo utilizzato, per le sue caratteristiche geometriche, fornisce una stima della misura della portata con errori accettabili entro i 92 L/s, pertanto i valori di portata al di sopra di tale limite (indicato dalla linea blu tratteggiata nel grafico di Figura 2.22) sono da ritenersi indicativi come andamento generale e non come valore assoluto (il dato risulta sottostimato). Dall'analisi di tale diagramma è possibile osservare come il sistema risponda in modo quasi immediato alle precipitazioni, con tempi di ritardo dell'ordine di poche ore ed un ritorno alle portate "di base" in tempi relativamente più lunghi. Quanto osservato è riconducibile alla coesistenza di 1) vie che giocano da collettori idrici in cui la velocità di deflusso può essere molto alta in occasione di eventi meteorici e di 2) vie di circolazione maggiormente distribuite e caratterizzate da minore permeabilità. Nel primo caso può trattarsi di condotti carsici sviluppati nel complesso Grezzoni-Marmi, ma potrebbero essere anche fratture beanti come quelle osservabili in superficie sulla testata del grande corpo di frana adiacente. Nel secondo caso si tratta di sistemi di fratturazione meno ampi ma che pervadono in maniera diffusa i volumi di roccia rilasciando più lentamente i volumi immagazzinati.

Nel periodo monitorato, la portata più bassa misurata alla fine dei periodi meno piovosi è risultata dell'ordine di circa 12 L/s, mentre la portata più elevata, verificatasi successivamente a cospicui eventi meteorici, è stimabile su valori superiori a 200 L/s. Come discusso precedentemente, le caratteristiche geometriche dello stramazzo permettono di misurare portate inferiori ai 92 L/s, per valori superiori la stima si è effettuata applicando il battente d'acqua totale registrato correttamente dal CTD diver alla formula dello stramazzo (vedi descrizione precedente). Tenendo conto della forma della canaletta in cui è posizionato lo stramazzo tali stime possono ritenersi piuttosto rappresentative. E' tuttavia da ricordare che in occasione di significativi eventi meteorici la canaletta riceve contributi anche dal Canal Buio e che pertanto, in queste occasioni, i suddetti valori non si riferiscono ai soli deflussi sorgivi.

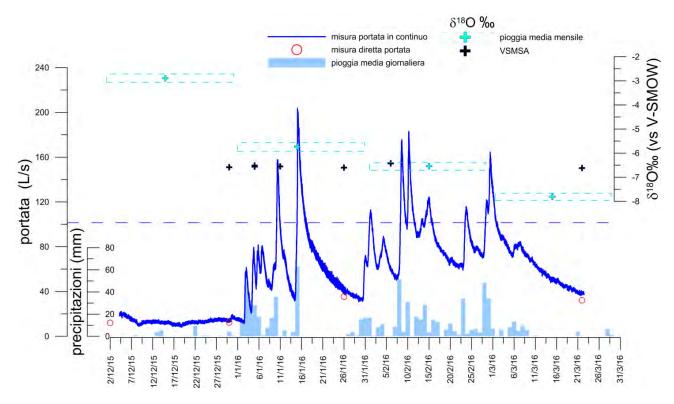


Figura 2.22. Cronogramma dei valori di portata misurata in continuo, misure di portata dirette e valori di δ^{18} O‰ (vs V-SMOW) della sorgente Molini di Sant'Anna (VSMSA), unitamente ai valori di precipitazione media giornaliera ed ai valori medi di δ^{18} O‰ (vs V-SMOW) delle acque meteoriche mensili raccolte mediante il pluviometro Sant'Anna. La linea tratteggiata in blu indica il valore massimo di portata con corretto funzionamento dello stramazzo; per portate superiori, il dato è derivato con una certa approssimazione (sottostimato).

Nello stesso grafico sono stati inoltre riportati i valori di δ^{18} O‰ sia della sorgente Molini di

Sant'Anna (VSMSA), sia quelli delle piogge campionate mensilmente, quindi rappresentative di un valore medio mensile, raccolte mediante il pluviometro collocato appositamente nell'abitato di Sant'Anna di Stazzema a quota 660 m s.l.m. (vedi anche Relazione di Medio Periodo).

Per quanto si osservino notevoli variazioni dei rapporti isotopici mensili delle acque meteoriche, con valori che passano da -2.90‰ in dicembre 2015 a -7.81‰ in marzo 2016, con un trend decrescente, i valori di δ^{18} O‰ della sorgente VSMSA su detto periodo mostrano un intervallo (-6.57÷-6.62‰) inferiore all'errore analitico (0.1‰), pertanto sono da ritenersi praticamente costanti. Anche considerando la totalità dei dati raccolti sull'intero periodo in studio, riferendosi a condizioni non perturbate da eventi meteorici si continua ad osservare una stabilità del dato isotopico. Sulla base della relazione esistente fra il rapporto isotopico dell'ossigeno-18 e la quota di infiltrazione delle acque meteoriche elaborata in alcuni studi svolti nell'area di studio e in aree limitrofe, è possibile derivare indicativamente una quota media di alimentazione tra 500 e 700 m s.l.m. Tali quote sono compatibili con quelle medie (circa 750 m s.l.m.) del bacino idrografico sotteso alla sorgente, suggerendo che le acque drenate possano essere associate alle sole precipitazioni che avvengono nel bacino. Tuttavia, in considerazione dell'assetto geologicostrutturale dell'area (Figure 2.2 e 2.11), non si può escludere un'alimentazione anche dal settore esterno al bacino, a nord del Monte Rocca (Figura 2.11), dove l'area coperta dall'affioramento Grezzoni-Marmi, avendo una quota media di 650 m, manterrebbe la compatibilità con la quota media dedotta dagli isotopi. Quello che invece è da escludersi con buona certezza è la presenza di contributi significativi da aree più distali, quali quelle della struttura idrogeologica del Monte Corchia, dove le acque di infiltrazione e delle emergenze principali mostrano valori isotopici decisamente inferiori (δ^{18} O% -7.5 ÷ -7.8 %).

La scelta di utilizzare questo tipo di approccio per definire le quote medie di alimentazione è dettata dal fatto che per una corretta applicazione delle metodologie isotopiche è indispensabile avere una conoscenza di alcuni parametri di carattere locale, quali la distribuzione sul territorio della composizione isotopica delle acque meteoriche ed il gradiente isotopico verticale, ottenuta mediante la raccolta delle acque meteoriche a diverse quote e per un periodo di almeno 3-4 anni. In mancanza di una rete pluviometrica ben distribuita, ma anche per ovviare ai lunghi tempi richiesti da questa metodologia, è stato deciso di utilizzare il gradiente isotopico verticale presentato in studi precedenti ed elaborato sulla base dello studio isotopico di piccole sorgenti locali con bacino di alimentazione prossimo a quello di emergenza ed ubicate a diverse quote che, grazie all'effetto regolatore dell'acquifero, forniscono valori mediati di δ^{18} 0% e specifici dell'area

in studio.

L'elevata variabilità del valore di δ^{18} O delle acque meteoriche campionate nel presente studio è osservabile nel grafico di Figura 2.23, dove sono riportati i valori di δ^{18} O‰ medi mensili delle piogge dall'inizio dello studio (gennaio 2014) ad oggi. In particolare, i valori variano tra un massimo di -2.01‰ a giugno 2015 ed un minimo di -10.11‰ a febbraio 2015, con una media pesata in funzione dei mm di pioggia di -7.24‰ relativa all'anno 2014 e di -6.64‰ per il 2015. Nello stesso grafico sono stati inoltre riportati i valori di δ^{18} O‰ della sorgente VSMSA e delle sorgenti Moresco (VSMOA, VSMOS, VSMOG), recapiti principali delle acque sotterranee nel bacino del Torrente Baccatoio.

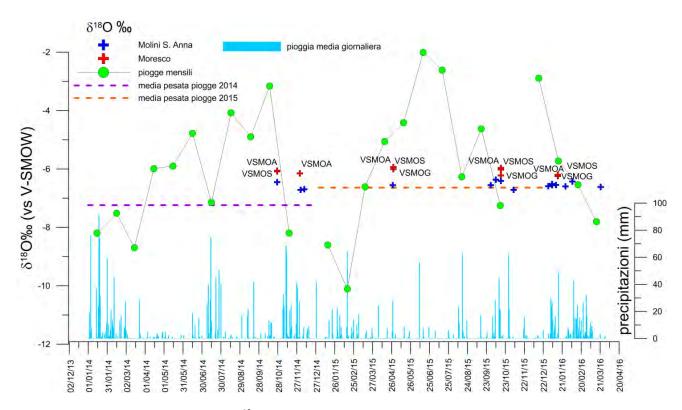


Figura 2.23. Cronogramma dei valori di δ^{18} O‰ (vs V-SMOW) della sorgente VSMSA, delle sorgenti Moresco (VSMOA, VSMOS, VSMOG) e delle piogge mensili raccolte mediante il pluviometro Sant'Anna, unitamente ai valori di precipitazione media giornaliera.

Osservando nel dettaglio l'andamento dei dati isotopici della sorgente VSMSA dall'inizio del periodo in studio ad oggi (Figura 2.24) è possibile verificare come in momenti sufficientemente distanti da periodi piovosi significativi (valore isotopico relativo al deflusso di base riportato come linea tratteggiata in Figura 2.24) tali valori si mantengano pressoché costanti; viceversa i campioni prelevati in corrispondenza, o poco dopo, di periodi piovosi mostrano variazioni significative rispetto ai valori del deflusso di base. Questo sembra suggerire un effetto nel breve periodo delle

acque di neoinfiltrazione (diretta e/o indiretta, cioè a seguito di ruscellamento) sulle acque sorgive; sul medio periodo (stagionale) il sistema acquifero sembra viceversa in grado di mediare la variabilità isotopica che, come noto in genere e come confermato dal pluviometro di Sant'Anna, interessa le precipitazioni nell'arco dell'anno. Naturalmente, queste considerazioni andrebbero supportate da una maggior frequenza di campionamento delle acque della sorgente.

Per quanto riguarda le tre sorgenti Moresco, si osservano nel complesso valori isotopici medi più positivi, con un valore di δ^{18} O‰ variabile tra -5.94‰ e -6.25‰, indicando quote medie di alimentazione minori rispetto alla sorgente VSMSA e variabili tra i 200 ed i 400 m s.l.m., Inoltre, anche se da un punto di vista chimico-fisico la sorgente Moresco Galleria (VSMOG) si differenzia nettamente dalle altre due, i valori isotopici non mostrano particolari differenze, anche se, in linea generale, è possibile osservare come la sorgente VSMOG presenti valori leggermente più negativi, ma soprattutto minore variabilità stagionale. Questi valori indicano che la sorgente VSMOG potrebbe essere l'espressione di una componente di circolazione che si approfondisce maggiormente all'interno del complesso idrogeologico del Calcare Cavernoso e quindi una maggiore omogeneizzazione delle acque, mentre le sorgenti VSMOA e VSMOS potrebbero essere rappresentative di una circolazione ipogea più superficiale, o comunque significativamente influenzate dalla stessa, in accordo con quanto anticipato nel precedente paragrafo relativamente a queste sorgenti.

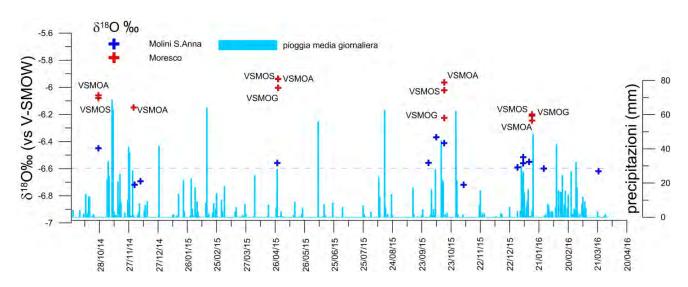


Figura 2.24. Cronogramma dei valori di δ^{18} O‰ (vs V-SMOW) della sorgente VSMSA, delle sorgenti Moresco (VSMOA, VSMOS, VSMOG), unitamente ai valori di precipitazioni medi giornalieri. La linea tratteggiata rappresenta il contenuto isotopico relativo al deflusso di base della sorgente VSMSA.

2.2.3.2. I drenaggi minerari Ribasso del Pollone e galleria Sant'Erasmo

Uno degli aspetti importanti di uno studio generale legato alla presenza di effluvi di acque di ambiente minerario è la conoscenza delle portate di acqua contaminata in uscita, in modo da poterne quantificare l'entità in sede di interventi di trattamento e bonifica. Per tale motivo, il Comune di Pietrasanta ha dato specifico incarico ad alcuni tecnici per il monitoraggio e la quantificazione di tali portate. A tal fine, sono stati collocati due stramazzi all'uscita di altrettante gallerie minerarie, vale a dire la galleria di Ribasso della miniera del Pollone (VDRPO) e la galleria di ribasso della miniera di Monte Arsiccio, denominata galleria Sant'Erasmo (VDSRM). Tali gallerie, infatti, unitamente alla galleria di Ribasso del Pianello, sono quelle che apportano i maggiori quantitativi di acqua contaminata nel sistema del Baccatoio.

Pertanto, pur non essendo inclusa tra le attività previste nell'ambito dell'Accordo di Collaborazione, è stato ritenuto opportuno acquisire questi dati di portata anche per inserirli nel quadro idrodinamico e idrogeologico del sistema del Baccatoio, poiché a tutti gli effetti si comportano come recapiti di parte delle acque del sistema stesso.

Gli stramazzi sono stati collocati dai tecnici incaricati dal Comune nel mese di luglio 2015. Tuttavia, in seguito al rapido deterioramento del materiale utilizzato (ferro) a contatto con le acque acide in uscita dalle gallerie, gli stramazzi non hanno operato correttamente, tranne il primo mese, corrodendosi e non permettendo una misura adeguata della portata, specialmente per Sant'Erasmo.

Successivamente, nei giorni 21-23 gennaio 2016, i tecnici incaricati dal Comune hanno provveduto a far sostituire gli stramazzi in ferro mal funzionanti, ricollocando stramazzi nuovi in materiale plastico. Gli stramazzi, sia quelli in ferro che in materiale plastico, sono stati realizzati con apertura triangolare (Figure 2.25, 2.26).

Data l'entità della portata dei due stramazzi, generalmente abbastanza modesta, la misura di portata è stata effettuata riempiendo un recipiente a volume noto e cronometrandone il tempo impiegato, senza dover ricorrere alla formula idraulica per stramazzi a bocca triangolare. Frequentemente, oltre alla misura di portata sono stati acquisiti altri parametri di interesse al fine di valutarne gli andamenti in funzione della portata stessa, quali conducibilità elettrica e pH.

Ribasso del Pollone (VDRPO)

Per il Ribasso del Pollone sono stati acquisiti numerosi dati di portata a partire da poco dopo l'allestimento dello stramazzo (luglio 2015). Nell'ambito di questo studio, i dati sono stati acquisiti

a partire da ottobre 2015, mentre quelli precedenti (ed ulteriori del periodo di riferimento) sono stati forniti dal Dott. Geol. E. Pistilli, tecnico incaricato dal Comune di Pietrasanta. La Tabella 2.2 mostra tutti i dati raccolti relativamente a portata, pH e conducibilità elettrica.

Figura 2.25. Stramazzo collocato all'uscite della galleria di Ribasso del Pollone in un momento di deflusso significativo (12.02.2016).

Figura 2.26. Stramazzo collocato all'uscite della galleria Sant'Erasmo in un momento di deflusso significativo (10.02.2016).

Data - ora	Q (L/s)	рН	EC (μS/cm)	Data - ora	Q (L/s)	рН	EC (μS/cm)
7/7/15 11.00	0.34	•		3/1/16 11.30	0.80		.,
24/7/15 11.00	0.34			4/1/16 15.30	1.00	2.31	3930
7/8/15 11.00	0.33			5/1/16 16.30	1.45		
31/8/15 11.00	0.37			6/1/16 17.00	1.00	2.30	3870
21/9/15 11.00	0.34			8/1/16 16.30	0.65	2.26	3700
24/9/15 11.00	0.34			10/1/16 15.30	1.27	2.18	3420
5/10/15 16.05	0.28			11/1/16 13.15	0.81	2.47	3750
8/10/15 11.00	0.35			12/1/16 11.00	0.83	2.30	3935
15/10/15 9.00	0.69			13/1/16 12.00		2.30	
16/10/15 16.30	0.58			14/1/16 10.25	0.56		
16/10/15 17.00	0.56			15/1/16 10.30	1.25	2.32	3530
18/10/15 11.00	0.43			16/1/16 14.00	0.76		
19/10/15 15.00	0.41			17/1/16 15.00	0.66	2.28	4230
21/10/15 15.00	0.33			19/1/16 14.00	0.65	2.30	3940
25/10/15 11.00	0.30			S	ostituzione s	tramazzo	
26/10/15 11.00	0.36			24/1/16 10.00		2.37	3180
29/10/15 10.00	0.85	2.40	4310	30/1/16 14.00	0.70	2.27	3920
30/10/15 10.30	0.54			31/1/16 14.40	0.57		
31/10/15 11.00	0.47	2.30	4230	1/2/16 10.00	0.72		
1/11/15 17.00	0.42			1/2/16 15.15	0.67		
6/11/15 9.00	0.37	2.26	4020	2/2/16 14.15			
8/11/15 11.30	0.30			6/2/16 11.45	0.46		
10/11/15 15.50	0.27			7/2/16 14.50	0.46		
12/11/15 11.00	0.30			8/2/16 17.30	1.30	2.24	4370
19/11/15 11.00	0.30	2.20	4335	9/2/16 7.20	0.84		
21/11/15 10.30	0.29	2.47	4140	9/2/16 16.50	0.87	2.30	4420
22/11/15 9.50	0.41			10/2/16 15.50	1.40	1.58	4760
22/11/15 15.45	0.38	2.36	4650	11/2/16 17.50	0.90	2.05	5390
22/11/15 17.00	0.38			12/2/16 13.40	1.20	2.01	5423
23/11/15 17.00	0.35	2.30	4320	13/2/16 16.30	1.19		
28/11/15 12.25	0.29			16/2/16 16.00	1.31		
29/11/15 12.25	0.26	2.40	3980	28/2/16 15.25	1.67	1.98	4140
6/12/15 14.00	0.31			6/3/16 15.15	1.21		
8/12/15 16.20	0.28			8/3/16 8.00	1.21		
13/12/15 16.20	0.27			10/3/16 9.00	0.95		
20/12/15 14.10	0.28			11/3/16 9.00	0.92		
23/12/15 8.20	0.29	2.49	2989	20/3/16 17.40	0.55		
27/12/15 10.30	0.27			22/3/16 14.15	0.54	1.76	6270
30/12/15 15.00	0.28			29/3/16 16.30	0.45		
2/1/16 10.45	0.27			5/4/16 14.40	0.44	2.11	5660

Tabella 3.2. Dati di portata, pH e conducibilità elettrica (EC) acquisiti per il Ribasso del Pollone (in rosso dati forniti dai consulenti del Comune di Pietrasanta; laddove non disponibile l'ora esatta di misura sono state riportate le ore 11.00 come ora ipotetica di riferimento).

Come si nota, le portate del Ribasso del Pollone generalmente si collocano tra 0.3 e 1.0 L/s. Valori inferiori a 0.3 L/s si hanno solo dopo prolungati periodi senza pioggia e comunque non scendono mai, almeno durante il periodo monitorato, sotto 0.26 L/s. I valori maggiori si hanno durante i periodi piovosi, con portate che arrivano a superare anche 1.3 L/s in seguito a eventi di pioggia particolarmente intensi.

In prima approssimazione, al fine di stimare il volume di acqua contaminata rilasciata in un anno dal Ribasso del Pollone, si possono fare alcuni esempi in funzione della portata, considerata indicativamente costante tutto l'anno:

- considerando una portata costante di 0.3 L/s, il drenaggio riverserebbe nel Torrente Baccatoio 9.5·milioni di litri;
- considerando una portata costante di 0.5 L/s, il drenaggio riverserebbe nel Torrente Baccatoio 16· milioni di litri;
- considerando una portata costante di 0.8 L/s, il drenaggio riverserebbe nel Torrente Baccatoio 25· milioni di litri;
- considerando una portata costante di 1.0 L/s, il drenaggio riverserebbe nel Torrente Baccatoio 32· milioni di litri.

Si può ragionevolmente supporre che la portata media durante l'anno non sia troppo distante da 0.5 L/s, che comporta lo sversamento di circa 16000 m³ (16 milioni di litri) di acqua contaminata nel Torrente Baccatoio in un anno.

In Figura 2.27 è riportato l'andamento delle portate in riferimento al *trend* delle piogge giornaliere cadute nel medesimo periodo. La pioggia messa in confronto con la portata è stata ottenuta come media giornaliera della pioggia misurata nelle 5 stazioni pluviometriche situate dentro o appena al di fuori dello spartiacque del bacino del Torrente Baccatoio (Pietrasanta, Pomezzana, Camaiore I Frati, Vallelunga, Gallena – vedi Relazione di Medio Periodo per l'ubicazione e le specifiche delle stazioni).

Come si può apprezzare dal grafico, le portate rispondono piuttosto rapidamente agli impulsi di pioggia, con tempi di risposta anche inferiori alle 24 ore e ritorno alle portate ordinarie in tempi relativamente più lunghi. Ciò sta a significare una buona permeabilità del complesso idrogeologico drenato dalla galleria.

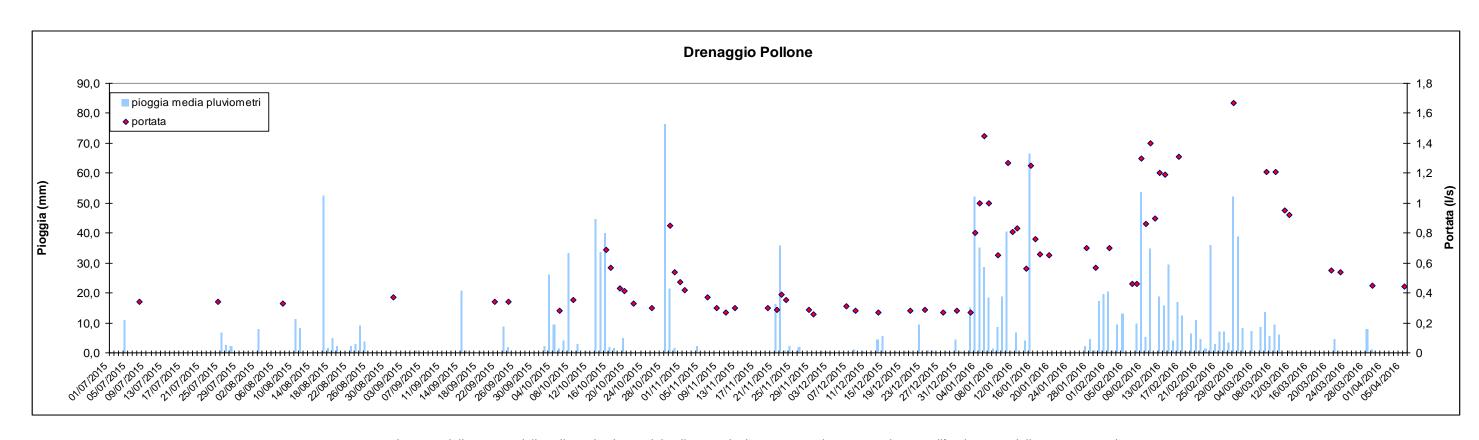


Figura 2.27. Andamento delle portate della galleria di Ribasso del Pollone tra luglio 2015 e aprile 2016 in relazione all'andamento delle piogge giornaliere.

Per quanto riguarda i parametri pH e conducibilità elettrica (EC), nel periodo monitorato non sono state osservate particolari variazioni. Il pH solitamente assume valori compresi tra 2.2 e 2.4. Soltanto in poche occasioni è uscito da questo intervallo, come si può apprezzare anche dal grafico di Figura 2.28. Valori anomali sono stati registrati soprattutto tra febbraio e marzo 2016, durante periodi con portate abbastanza elevate mantenute per un periodo relativamente lungo.

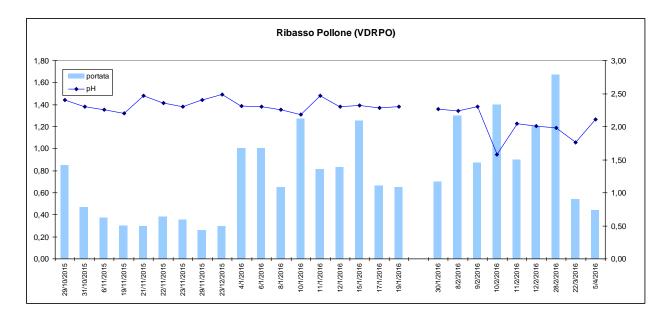


Figura 2.28. Relazione tra portata e pH misurati alla galleria di Ribasso del Pollone tra ottobre 2015 ed aprile 2016.

Analoghe considerazioni possono essere fatte per la conducibilità elettrica, che generalmente oscilla intorno a 4000-5000 μ S/cm. Nel grafico di Figura 2.29 è osservabile la relazione di questo parametro con l'andamento delle portate.

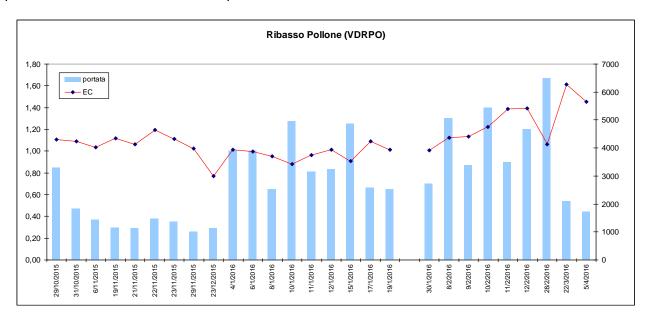


Figura 2.29. Relazione tra portata e EC misurate alla galleria di Ribasso del Pollone tra ottobre 2015 ed aprile 2016.

Valori apparentemente anomali (oltre 5000 μS/cm, superiori ai valori più comuni) si registrano ancora una volta nel periodo in cui elevate portate insistono per un periodo prolungato.

Il grafico di Figura 2.30 mostra invece una possibile relazione tra i valori di EC e pH nel periodo misurato.

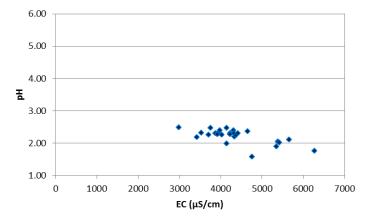


Figura 2.30. Relazione tra pH e EC misurate alla galleria di Ribasso del Pollone tra ottobre 2015 ed aprile 2016.

Sant'Erasmo (VDSRM)

La misura delle portate della galleria Sant'Erasmo è stata più difficoltosa, poiché i fenomeni corrosivi subiti dallo stramazzo in ferro allestito inizialmente hanno reso sostanzialmente inefficiente per diverso tempo lo stramazzo. Ciò ha comportato un minor numero di misure rispetto al Ribasso del Pollone. Anche in questo caso le misure sono state acquisite a partire da luglio 2015; la maggior parte dei dati del primo periodo sono stati forniti dal Dott. Geol. E. Pistilli, consulente del Comune di Pietrasanta. In Tabella 2.3 sono riportati tutti i dati raccolti relativamente a portata, pH e conducibilità elettrica.

Data e ora	Q (L/s)	рН	EC (μS/cm)
7/7/15 11.00	0.18		
24/7/15 11.00	0.13		
7/8/15 11.00	0.08		
31/8/15 11.00	0.19		
15/9/15 11.00	0.80		
21/9/15 11.00	0.33		
24/9/15 11.00	0.23		
8/10/15 11.00	0.43		
15/10/15 7.30	2.67		
16/10/15 15.15	0.77		
18/10/15 10.10	0.32		
21/10/15 11.00	0.28		
26/10/15 11.00	0.18		
29/10/15 13.10	2.18		
29/10/15 14.30	1.80	2.60	2500
31/10/15 13.00	0.70	2.50	3030

5/11/15 11.00	0.36		
19/11/15 11.00	0.33	2.20	4970
29/12/15 11.00	0.40	2.40	4110
11/1/16 12.30	3.30	2.58	4020
12/1/16 11.00	2.37	2.30	4325
13/1/16 11.00	2.00	2.26	
15/1/16 11.00	3.58	2.45	3030
19/1/16 11.00	1.08	2.00	7825
Sost	ituzione strama:	zzo	
24/1/16 10.30	-	1.94	8120
26/1/16 16.30	?	1.99	8050
31/1/16 14.25	2.05		
1/2/16 16.00	3.12		
6/2/16 9.30	1.45		
7/2/16 15.30	1.00	1.46	5870
8/2/16 16.30	4.50	5.81	348
9/2/16 14.50	4.60	2.30	5480
10/2/16 15.50	6.00	1.64	5930
11/2/16 11.15	3.40	1.99	7161
12/2/16 13.40	3.30	2.18	4719
13/2/16 16.30	4.15		
24/2/16 11.00	4.30	2.30	4810
28/2/16 14.45	6.00	2.19	2990
8/3/16 8.30	2.72		
22/3/16 14.15	0.76	1.66	8970
29/3/16 17.00	0.65		
5/4/16 10.00	0.44	2.12	8250
		-	

Tabella 2.3. Dati di portata, pH e conducibilità elettrica (EC) acquisiti per il Ribasso del Pollone (in rosso dati forniti dai consulenti del Comune di Pietrasanta); laddove non disponibile l'ora esatta di misura sono state riportate le ore 11.00 come ora ipotetica di riferimento.

Dai dati, si evince immediatamente come il drenaggio della galleria Sant'Erasmo mostri oscillazioni della portata molto più importanti rispetto al Ribasso del Pollone. Le portate sono prossime allo zero nei periodi più siccitosi, ma raggiungono valori piuttosto elevati (anche fino a 6 L/s) in seguito a piogge intense. Al fine di una quantificazione del volume di acqua contaminata immessa nel torrente dalla galleria di Sant'Erasmo si può indicativamente considerare il valore medio delle portate misurate nel periodo luglio 2015-aprile 2016, risultato 1.8 L/s. Pertanto, considerando una portata costante per tutto l'anno di 1.8 L/s, il drenaggio riverserebbe nel torrente 5.7·10⁷ litri (57000 m³) di acqua contaminata in un anno. In Figura 2.31 è mostrato anche per Sant'Erasmo l'andamento delle portate in riferimento al *trend* delle piogge giornaliere cadute nel medesimo periodo (considerate come indicato precedentemente). Il grafico conferma l'estrema variabilità delle portate in relazione alle piogge, con tempi di risposta piuttosto brevi. Le consistenti oscillazioni della portata in relazione all'entità delle piogge denotano il comportamento idrodinamico di un sistema ad alta permeabilità.

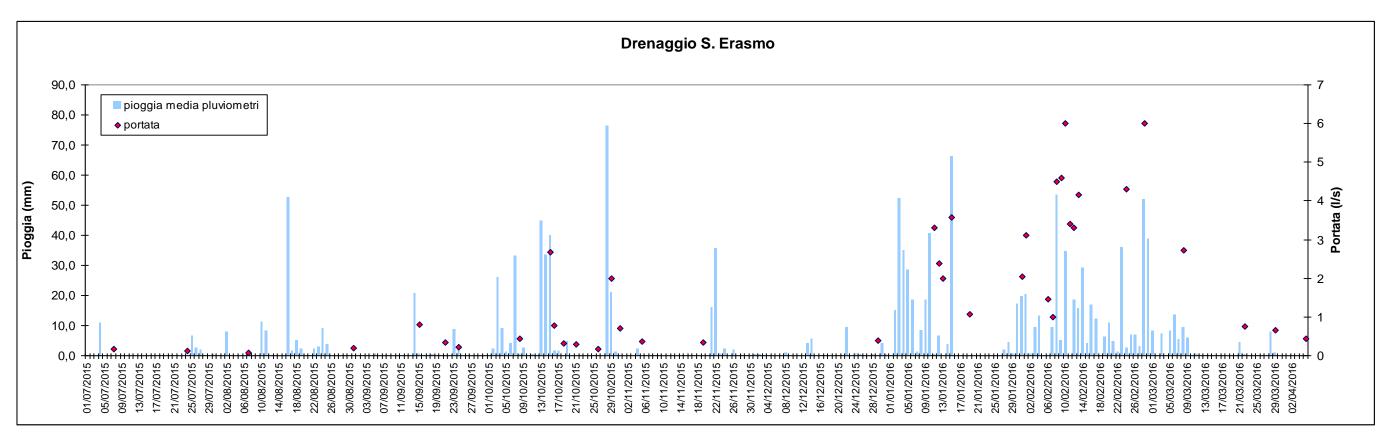


Figura 2.31. Andamento delle portate della galleria Sant'Erasmo tra luglio 2015 e aprile 2016 in relazione all'andamento delle piogge giornaliere.

La Figura 2.32 riporta il confronto tra le portate del Ribasso del Pollone e della galleria Sant'Erasmo, in cui si evince il diverso comportamento idrodinamico dei due sistemi più in termini di variazione di portata che di tempi di risposta del sistema idrogeologico drenato, che sono pressoché coincidenti. La Figura 2.33 riporta invece una possibile correlazione tra le portate dei due sistemi.

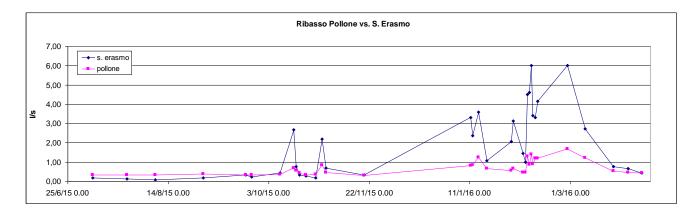


Figura 2.32. Confronto tra la portata del Ribasso del Pollone e quella della galleria Sant'Erasmo tra ottobre 2015 ed aprile 2016.

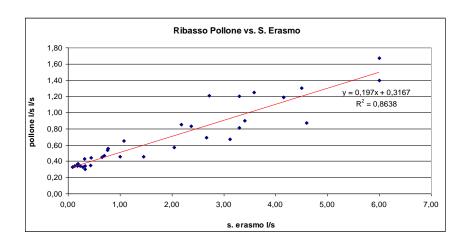


Figura 2.33. Possibile relazione tra la portata del Ribasso del Pollone e quella della galleria Sant'Erasmo tra ottobre 2015 ed aprile 2016.

Anche i parametri pH e conducibilità elettrica (EC) mostrano una maggiore e più significativa variabilità del sistema rispetto alla galleria di Ribasso del Pollone. Il pH solitamente oscilla tra valori compresi tra 2.0 e 2.5, ma valori inferiori a 2.0 e superiori a 2.5 non sono infrequenti. Il grafico di Figura 2.34 mette in evidenza anche un valore particolarmente anomalo, corrispondente a 5.81

misurato in occasione di portate abbastanza elevate ma poi non ripetuto, pur mantenendosi i deflussi idrici cospicui. Tale valore non è mai stato misurato in tutto il periodo osservato, ma ha trovato conferma anche in una ripetizione dell'analisi in laboratorio e possibili spiegazioni del fenomeno sono tuttora da formulare, anche perché, come si vedrà in seguito, corrispondentemente è stato misurato un anomalo e molto basso valore della conducibilità elettrica.

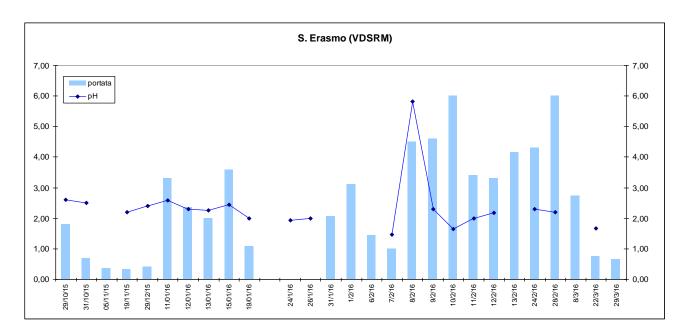


Figura 2.34. Relazione tra portata e pH misurati alla galleria Sant'Erasmo tra ottobre 2015 ed aprile 2016.

Per quanto riguarda la conducibilità elettrica, i dati sono riportati nel grafico di Figura 2.35. I valori, pur discontinui, oscillano sensibilmente tra 3.000 e 8.000 μ S/cm senza una visibile relazione con l'andamento delle portate. Come anticipato in precedenza, il giorno 08/02/2016 è stato registrato un valore bassissimo di 348 μ S/cm, mentre il pH era salito a 5.81. In prima approssimazione, parrebbe trattarsi dell'arrivo di un cospicuo quantitativo di acqua con caratteristiche assai diverse da quelle tipiche dei drenaggi minerari, ma il fenomeno è stato osservato solo una volta e quindi è al momento difficile fare ipotesi sull'origine. Tale evento a bassa conducibilità ha trovato riscontro anche nei valori misurati dal Dott. Geol. E. Pistilli, tecnico incaricato del Comune di Pietrasanta. Il grafico di Figura 2.36 mostra infine una possibile relazione tra i valori di EC e pH per il drenaggio Sant'Erasmo nel periodo misurato. Il punto a più bassa conducibilità e pH \approx 6 corrisponde ad un

campionamento avvenuto durante un intenso evento meteorico e, come anticipato poco sopra, testimonia l'arrivo diretto e abbondante di acque a bassa conducibilità e pH neutro.

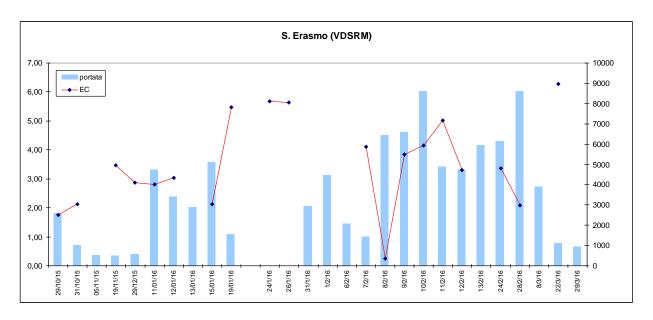


Figura 2.35. Relazione tra portata e EC misurate alla galleria di Sant'Erasmo tra ottobre 2015 ed aprile 2016.

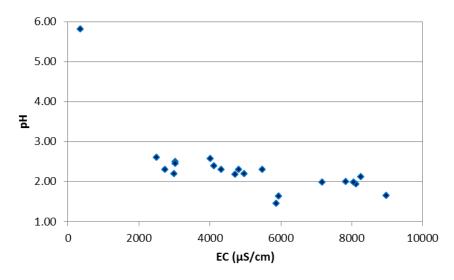


Figura 2.36. Relazione tra pH e EC misurate alla galleria Sant'Erasmo tra ottobre 2015 ed aprile 2016.

3. Modello concettuale della contaminazione

3.1. La fase acquosa

Le acque rappresentano il principale mezzo di dispersione di EPT nell'ecosistema, sia come particellato in sospensione sia come specie disciolte. Nel caso delle acque dei drenaggi acidi di miniera e delle acque del Torrente Baccatoio, per il contrasto di caratteristiche chimico-fisiche delle acque stesse che vengono a mescolarsi, un modello che descriva la dispersione della contaminazione deve tener conto delle reazioni che sono energeticamente favorite ma anche delle loro cinetiche. A questo scopo sono utili esperimenti di laboratorio che riproducono, in condizioni controllate, alcuni dei processi naturali.

Come evidenziato nella Relazione di Medio Periodo, nel sistema "drenaggi acidi di miniera – acque superficiali del Torrente Baccatoio" il ciclo del ferro tra specie solubili di Fe(II), Fe(III) e precipitati di Fe(III) ha un ruolo fondamentale nel determinare il destino di una serie di EPT.

Le misure del potenziale di ossido-riduzione effettuate nelle acque dei drenaggi, pozze interne nelle gallerie e stillicidi dalla volta, mostrano valori di Eh di circa 0.8 V (vedi Relazione di Medio Periodo, Appendici). Questo dato indica uguale attività in fase acquosa tra Fe(II) e Fe(III), ovvero circa il 69% del ferro totale è presente come Fe(III) ed il rimanente come Fe(II). La coesistenza di Fe(II) e Fe(III) nei drenaggi ed in alcune porzioni del torrente è permessa dalle condizioni di pH acido, inferiore a 2.3. In queste condizioni sono state misurate le elevatissime concentrazioni di ferro disciolto. Implicita in questa osservazione è che qualsiasi materiale che contenga ferro metallico diviene instabile se posto a contatto con acque aventi queste caratteristiche, e deve essere quindi evitato in eventuali manufatti.

L'immissione delle acque dei drenaggi nell'ecosistema superficiale del Torrente Baccatoio altera le condizioni di stabilità della coppia Fe(II)/Fe(III); il Fe(III) si idrolizza e forma precipitati amorfi (FeOOH) con rilascio ulteriore di acidità, con una reazione del tipo:

$$Fe^{3+} + 2H_2O \rightarrow FeOOH + 3H^+$$

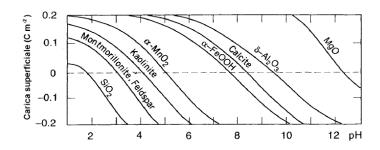
Le cinetiche del processo possono essere molto rapide (dell'ordine di secondi) o relativamente lente (dell'ordine di ore), in funzione di una serie di parametri tra cui il pH, la quantità di ossigeno disponibile ed il chimismo stesso dell'acqua. Nel modello concettuale esposto di seguito viene

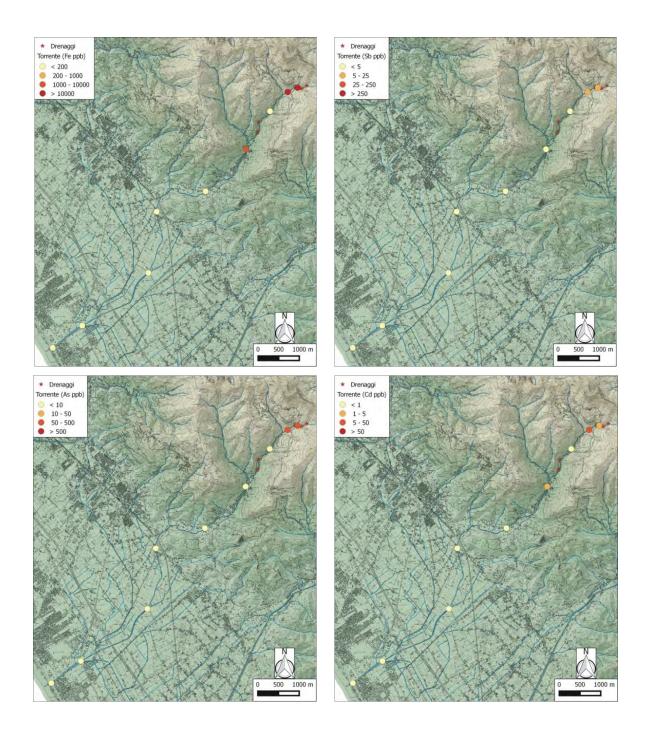
assunto che la precipitazione di FeOOH sia immediata. E' da notare che la trasformazione del Fe(III) dalla fase acquosa ad un precipitato è quantitativa.

Parte del ferro nelle acque del Torrente Baccatoio a valle della immissione dei drenaggi acidi di miniera passa quindi da specie disciolta a precipitati solidi in sospensione, formando sia nanoparticelle colloidali facilmente trasportate nel flusso della corrente, che depositi nel sedimento dell'alveo e flocculi trattenuti dalla vegetazione acquatica. Le immagini nella Figura 3.1 (a, b) mostrano questi fenomeni.

Figura 3.1. a) formazione di particellato di idrossidi di Fe nel Torrente Baccatoio; b) precipitati e flocculi di idrossidi di Fe trattenutii dalla vegetazione lungo il corso del torrente.

Le particelle di idrossidi di ferro che si formano hanno la caratteristica di sviluppare superfici cariche in funzione del pH delle acque con cui si trovano a contatto. In particolare, la carica della superficie è positiva a pH minori di circa 7.7 (Figura 3.2).




Figura 3.2. Carica superficiale vs pH per alcune sostanze solide. Si notano FeOOH ed altre specie di interesse.

La Figura 3.2 mostra come anche altre fasi solide possano sviluppare superfici cariche. La presenza di una superficie carica sulle particelle solide di idrossido di ferro (FeOOH) permette l'adsorbimento degli EPT presenti in soluzione come specie ioniche. Questo interessa in particolare l'As, come sottolineato nella Relazione di Medio Periodo, che formando ossianioni (specie con carica netta negativa), alle condizioni tipiche di pH delle acque del Torrente Baccatoio, viene trattenuto fortemente sulla superficie carica positivamente delle particelle di idrossido di ferro al momento stesso della loro formazione.

Altri EPT risentono del processo di adsorbimento sui precipitati di ferro, e questo determina una rimozione dei contaminanti dalla fase acquosa ed il loro partizionamento nei solidi sospesi. All'atto delle analisi delle acque del torrente, dunque, dopo filtrazione a 0.45 µm come previsto dalle normative, il particellato sarà in buona parte rimosso e le acque potranno risultare di buona qualità.

Dati questi processi, deve essere tuttavia sottolineato che l'uso delle acque del torrente per irrigazione senza la preventiva separazione del particellato determina la dispersione dei contaminanti nei suoli. Sarebbe necessario l'uso preventivo di particolari trattamenti di rimozione dei solidi sospesi per l'eventuale uso irriguo. Poiché le acque del Torrente Baccatoio sono state utilizzate per irrigazione, anche alimentando gore e canalizzazioni, questo ha contribuito alla contaminazione dei suoli.

L'andamento della concentrazione media di una serie di EPT, a partire dal ferro e considerando le medie di tutti i dati disponibili, nelle acque del Torrente Baccatoio dall'alto corso alla zona di foce nelle condizioni precedenti lo scarico della sorgente Molini di Sant'Anna nel torrente, è riportata graficamente nelle Figure 3.3.

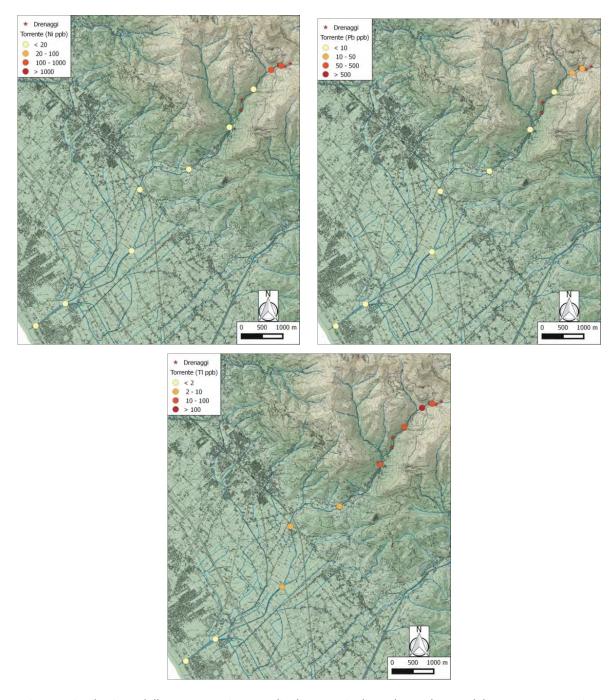
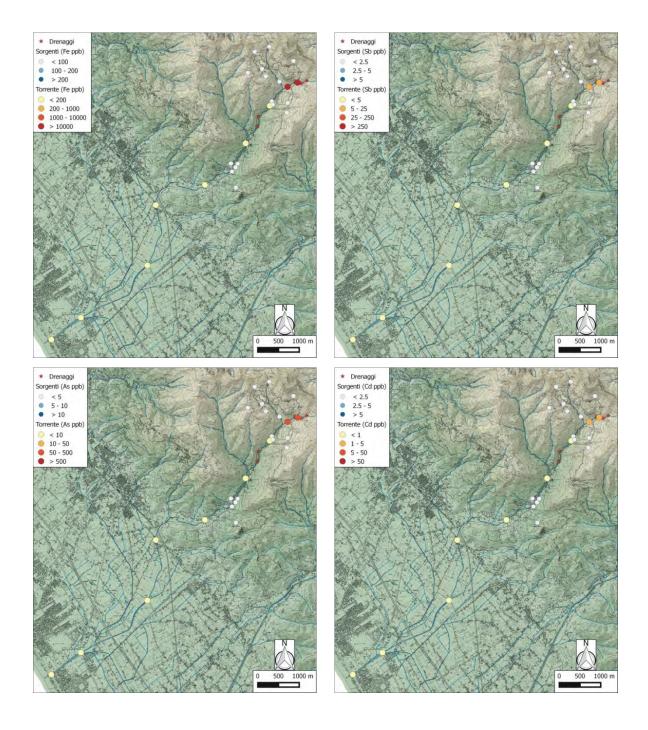



Fig 3.3. Distribuzione della concentrazione media di una serie di EPT lungo il corso del Torrente Baccatoio, precedentemente allo scarico della sorgente Molini di Sant'Anna. In giallo i valori al di sotto della soglia di legge per le acque sotterranee (D.Lgs 152/06).

Le Figure 3.4 riportano invece la stessa rappresentazione ma successivamente allo scarico nel Torrente Baccatoio della sorgente Molini di Sant'Anna, ed includendo anche le acque delle sorgenti.

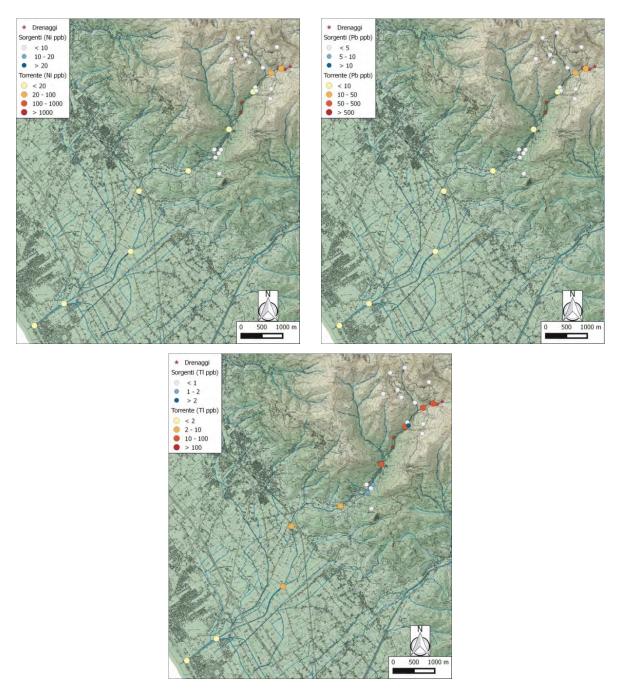


Figura 3.4. Distribuzione della concentrazione di una serie di EPT lungo il corso del Torrente Baccatoio, successivamente allo scarico della sorgente Molini di Sant'Anna. Simbologia di colori nelle figure stesse, in riferimento alle soglie normative per le acque superficiali e sotterranee. Evidenziate anche le sorgenti di acque sotterranee.

Dalle Figure 3.3 e 3.4 si può notare come una serie di EPT segua l'andamento della concentrazione di ferro, indicando come la precipitazione di idrossidi rappresenti un processo naturale efficace di rimozione dei contaminanti dalle acque. Si nota anche come le sorgenti nel bacino siano caratterizzate da acque di buona qualità per gli elementi considerati.

Eccezione è la concentrazione di TI nel torrente e nella sorgente Molini di Sant'Anna: questo elemento si mantiene in concentrazioni prossime o superiori alla soglia di 2 µg/L per un tratto significativo del corso d'acqua, e solo in prossimità delle due stazioni verso la foce le concentrazioni si riducono a valori inferiori a questa soglia (almeno per i campionamenti disponibili). Questa osservazione sottolinea l'elevata capacità di dispersione di questo elemento nell'ecosistema attraverso la fase acquosa, non risentendo di significativi processi naturali di rimozione per adsorbimento sulle particelle di idrossidi di ferro o altri precipitati. Per quanto riguarda le sorgenti, si notano concentrazioni (costantemente per i dati disponibili) superiori alla soglia nella sorgente Molini di Sant'Anna, e comunque significative nelle sorgenti Moresco Alta e Moresco Sondaggio. Come evidenziato nella Relazione di Medio Periodo, questo è attribuito, per le sorgenti Moresco Alta e Sondaggio, ad infiltrazione di acqua del Torrente Baccatoio nella riserva sotterranea, in prossimità della emergenza, e pone la questione della vulnerabilità della sorgente Moresco Galleria, captata ad uso potabile.

Tra gli EPT, la concentrazione di manganese nelle acque del Torrente Baccatoio mostra una variazione complessa (Figura 3.5). Dalla figura, si nota un aumento di concentrazione a partire dalla stazione VTINC. Riguardo questa osservazione, nel seguito verranno fatte alcune considerazioni in relazione alle caratteristiche delle acque interstiziali presenti nel sedimento nell'alveo sommerso del torrente in prossimità di VTINC. E' da notare comunque che le cause di questo andamento possono essere molteplici.

Il dettaglio delle caratteristiche di qualità delle acque del Torrente Baccatoio prima e dopo l'immissione in scarico delle acque della sorgente Molini di Sant'Anna è mostrato in Figura 3.6. Dalla figura, si nota come l'immissione nel Torrente Baccatoio delle acque della sorgente Molini di Sant'Anna contribuisca all'abbattimento del Fe ed altri EPT, sia per diluizione che per effetti indotti di precipitazione di idrossidi di ferro stessi. Parte di questi fenomeni sono confermati da esperimenti di laboratorio (vedi Capitolo 5).

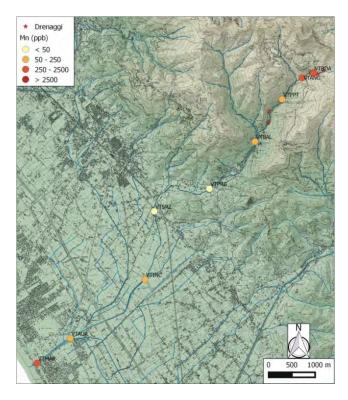



Fig 3.5. Distribuzione della concentrazione di manganese lungo il corso del Torrente Baccatoio, successivamente allo scarico della sorgente Molini di Sant'Anna. Simbologia di colori nella figura stessa, in riferimento alle soglie normative per le acque sotterranee.

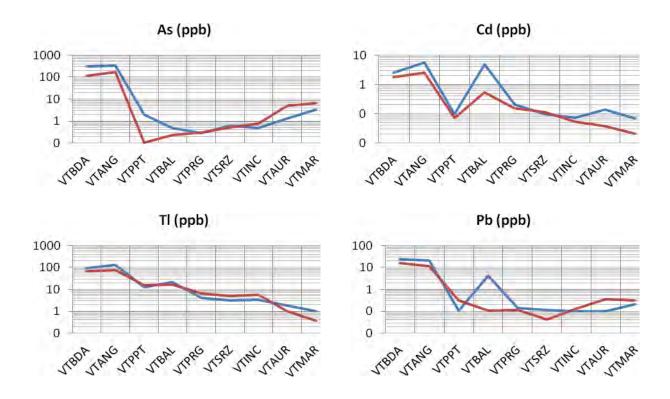


Figura 3.6. Andamento della distribuzione di alcuni EPT con specifico riferimento al ruolo della immissione nel Torrente Baccatoio delle acque della sorgente Molini di Sant'Anna. Sigle come in Tabella 1.4. Simboli: linea azzurra: condizione precedente lo scarico della sorgente Molini di Sant'Anna nel Torrente Baccatoio; linea rossa: condizione posteriore allo scarico della stessa sorgente. Localizzazione della stazione immediatamente a valle dello scarico: VTPPT.

Gli effetti dello scarico della sorgente sulla concentrazione di TI nelle acque del torrente sembrano trascurabili, allo stato dei dati disponibili. Tuttavia va sottolineato che la sorgente Molini di Sant'Anna rappresenta una sorgente costante di rilascio, seppur di minor importanza rispetto ai drenaggi minerari, di TI alle acque del torrente e dunque all'ecosistema superficiale, e dovrebbe esserne pianificato il trattamento preventivo allo scarico. Anche questi aspetti sono preliminarmente trattati nella parte sperimentale della presente Relazione.

3.2. Modello di distribuzione del ferro in un tratto del Torrente Baccatoio

Il modello ha come obiettivo quello di simulare la variazione della concentrazione del Fe(II) disciolto lungo un tratto del Torrente Baccatoio, considerando gli apporti dei drenaggi minerari nel mescolamento con le acque del torrente stesso e la sua cinetica di trasformazione a Fe(III). Come si è detto, il ciclo del ferro tra le forme solubili del Fe(II) e quelle poco solubili del Fe(III) determina il

destino di una serie di altri EPT, ed il modello ha lo scopo di fornire uno strumento di previsione, modulabile in funzione delle portate dei drenaggi e del torrente, variabili con la stagionalità.

Il tratto del Torrente Baccatoio considerato ha una lunghezza di circa 750 m a partire dal ponte della miniera del Pollone; il modello considera quindi l'effetto della immissione delle acque della galleria di Ribasso, con elevati contenuti in ferro, e le potenzialità del Torrente Baccatoio di indurre la formazione/precipitazione di idrossidi di Fe. Le portate considerate per il drenaggio acido della galleria di Ribasso e del torrente sono quelle medie. Il modello considera la presenza di salti morfologici con cascate ed i conseguenti effetti sugli equilibri gassosi nella fase acquosa, in particolare O₂ e CO₂. I dettagli del calcolo ed il codice di calcolo sono disponibili su richiesta.

Sono comprese in questo tratto le stazioni VTPPO, VTPPV e VTBAL delle due campagne di campionamento. Nel modello, il torrente è stato suddiviso in vari segmenti N di volume variabile. La segmentazione è stata fatta considerando tratti simili per velocità e portata. L'ingresso di materia (acqua e soluto) nel segmento N è l'uscita (acqua e soluto) nel segmento N-1 come mostrato in Figura 3.7. All'interno di ogni segmento il mescolamento è completo.

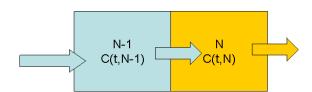


Figura 3.7. Schema utilizzato per il modello del Torrente Baccatoio. E' mostrato il flusso di materia tra due segmenti consecutivi.

Occorre ricordare che la cinetica della reazione di ossidazione del Fe(II) a formare Fe(III) è proporzionale alla concentrazione del Fe(II) stesso, alla pressione parziale di ossigeno e al quadrato della concentrazione di ossidrili nella soluzione (dunque al pH).

Sono state effettuate due simulazioni relative ai dati ottenuti nei campionamenti del mese di aprile e ottobre 2015.

Prima simulazione: campagna di aprile 2015.

In condizioni di stato stazionario il valore di concentrazione di Fe(II) nel Torrente Baccatoio calcolato in funzione della distanza dal punto di origine è mostrato in Figura 3.8. Sono riportati

anche i valori di concentrazione misurati nel torrente, nelle diverse stazioni di interesse, come riferimento.

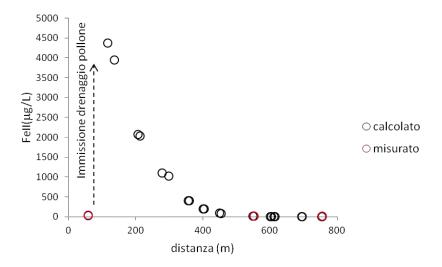


Figura 3.8. Andamento dei valori di concentrazione di Fe(II). Sul grafico sono riportati in rosso i valori di Fe totale misurato nelle stazioni, da sinistra verso destra, VTPPO, VTPPV e VTBAL nella campagna di aprile 2015.

Seconda simulazione: campagna di ottobre 2015

In condizioni di stato stazionario il valore di concentrazione di Fe(II) nel Torrente Baccatoio calcolato in funzione della distanza dal punto di origine è mostrato in Figura 3.9. Sono riportati anche i valori di concentrazione misurati nel torrente, nelle diverse stazioni, per riferimento.

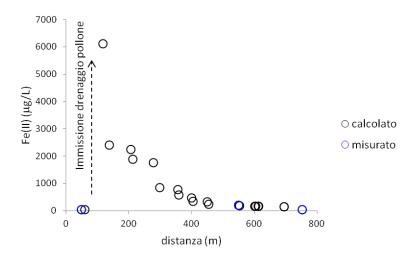


Figura 3.9. Andamento dei valori di concentrazione di Fe(II). Sul grafico sono riportati in blu i valori di Fe totale misurato nelle stazioni, da sinistra verso destra, VTPPO, VTPPV e VTBAL nella campagna di ottobre 2015.

Dalle Figure 3.8 e 3.9 si può notare come il modello simuli in maniera appropriata le concentrazioni di Fe effettivamente misurate. Inoltre, si nota come l'abbattimento della concentrazione di Fe disciolto nelle acque del torrente sia efficace nel corso d'acqua già immediatamente a valle della immissione del drenaggio acido e continui fino ad un valore relativamente costante di bassa concentrazione. Questo giustifica, come è stato descritto in precedenza, la distribuzione osservata di una serie di EPT nelle acque del Baccatoio che mostrano (con l'eccezione del Tl) un rapido decadimento. Il modello sottolinea come il particellato costituito da idrossidi di ferro abbia un ruolo importante nella dispersione per trasporto meccanico dei contaminanti e pone delle indicazioni riguardo i possibili metodi di bonifica.

E' tuttavia da sottolineare come questo effetto di diluizione/precipitazione di idrossidi permetta la dispersione del particellato colloidale e dei contaminanti fortemente adsorbiti. Dati recenti hanno dimostrato che le particelle colloidali possono migrare nelle zone di infiltrazione ed in subalveo anche per lunghe distanze, a causa del processo di esclusione, con comportamento conservativo ed elevate velocità di trasporto. Nel caso del Torrente Baccatoio il processo della precipitazione di colloidi associato alla diluizione dei drenaggi acidi da parte delle acque del torrente richiede quindi un cambio di paradigma nello studio della dispersione dei contaminanti.

3.3. La fase solida: sedimenti dell'alveo attivo

Le analisi mineralogiche ed il chimismo dei campioni di sedimento relativi alle due campagne effettuate sono riportate nella Relazione di Medio Periodo (vedi anche Appendice B della Relazione Finale). Come riportato in tale relazione, i dati si riferiscono sia alla componente mobile del sedimento di alveo che alla componente definita "fossile". I risultati delle indagini mineralogiche evidenziano l'abbondanza di ossidi e idrossidi di ferro e manganese in aggiunta a quarzo, fillosilicati, feldspati, barite, tormaline e carbonati nella frazione detritica. Come si è detto, gli idrossidi di ferro hanno un forte potere adsorbente per una serie di EPT, e definire quindi la loro origine e distribuzione nell'alveo, ovvero quanto dovuto al trasporto meccanico di particelle in sospensione e quanto attribuibile alla continua ossidazione del Fe(II) e precipitazione dalla fase acquosa, è particolarmente rilevante per le dinamiche di dispersione dei contaminanti. L'analisi del chimismo dei sedimenti mobili riportata nella Relazione di Medio Periodo già evidenziava l'assenza di correlazione tra la concentrazione di Fe e Mn, suggerendo il diverso comportamento di questi

elementi negli equilibri e cinetiche di partizionamento tra acqua e solido. Questo è evidenziato nella Figura 3.10, che riporta i campi di maggiore stabilità delle specie di Fe e Mn in termini di pH ed Eh, e ne evidenzia qualitativamente il diverso comportamento. Anche questi aspetti sono ripresi nella parte sperimentale, descritta nel seguito.

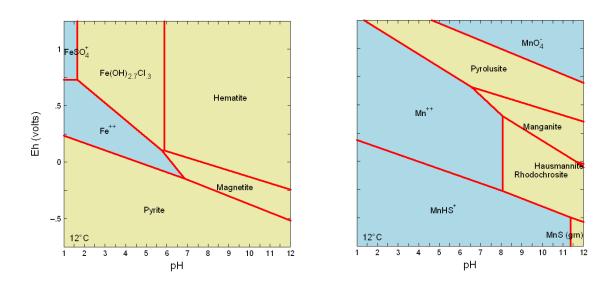


Figura 3.10. Relazioni di stabilità delle specie del Fe e Mn sulla base del chimismo delle acque del Torrente Baccatoio in località Pollino.

La presenza di fasi argillose nel sedimento, o degli stessi carbonati, determina ulteriormente il destino degli EPT nelle acque del torrente; in particolare i carbonati possono avere un ruolo importante nel trattenere Cd (un contaminante definito "prioritario" a livello Comunitario), e le fasi argillose hanno potere adsorbente anche per quanto riguarda il Tl oltre che Cr, Pb ed altri elementi.

Allo scopo di caratterizzare ulteriormente il sedimento e le sue proprietà di trattenere o rilasciare EPT alla fase acquosa, è stato effettuato il campionamento di due carote di sedimento indisturbato nel Torrente Baccatoio in prossimità della stazione VTINC. La Figura 3.11 mostra la località di campionamento ed il carotiere di tipo "a pistone" utilizzato.

Figura 3.11. Campionamento tramite carotiere a pistone dei sedimenti di alveo del Torrente Baccatoio in località Pollino (stazione VTINC). In primo piano, il lisimetro con tubazioni per l'estrazione dell'acqua interstiziale nel sedimento sommerso.

Nella stessa Figura 3.11 si nota il posizionamento del lisimetro con relativa tubazione per l'estrazione dell'acqua interstiziale presente nel sedimento, nell'alveo sommerso, per il confronto di chimismo con l'acqua libera del torrente, come sarà descritto successivamente.

Una sintesi del chimismo dei sedimenti in funzione della profondità della carota per alcuni EPT ed elementi di interesse è illustrata nelle Figure 3.12-3.14. In Tabella 3.1 sono riportate le fasi minerali identificate tramite XRD nei vari orizzonti.

Dall'analisi della carota si nota la maggiore concentrazione di As negli orizzonti più superficiali, associata alla elevata concentrazione di Fe, manifestazione dei processi già descritti. La presenza di questi idrossidi di Fe previene il rilascio di As (ed altri EPT) alle acque interstiziali ed al torrente, e dunque devono essere evitate le azioni che possono indurne la destabilizzazione.

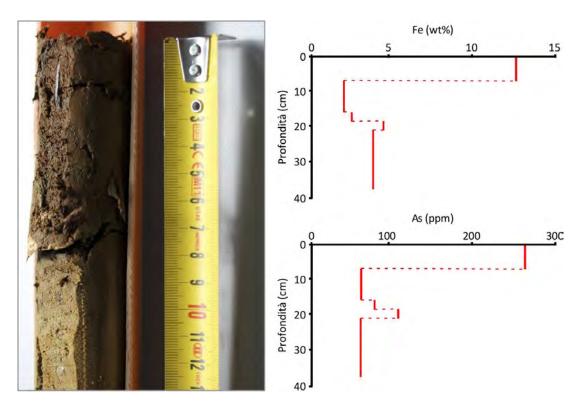


Figura 3.12. Aspetto macroscopico della carota di sedimento indisturbato (primi 12 cm circa) e concentrazione di Fe e As determinata tramite HHXRF.

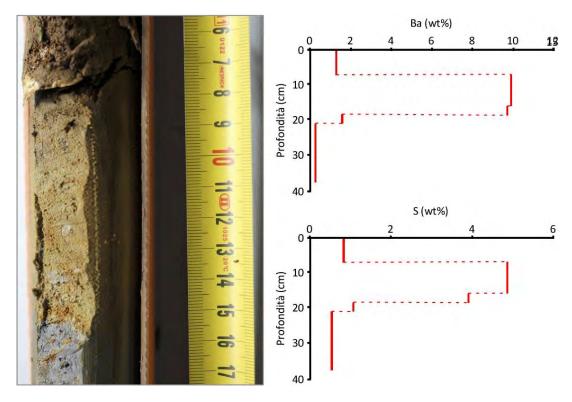


Figura 3.13. Aspetto macroscopico della carota di sedimento indisturbato (fra 6 e 17 cm circa) e concentrazione di Ba e S determinata tramite HHXRF.

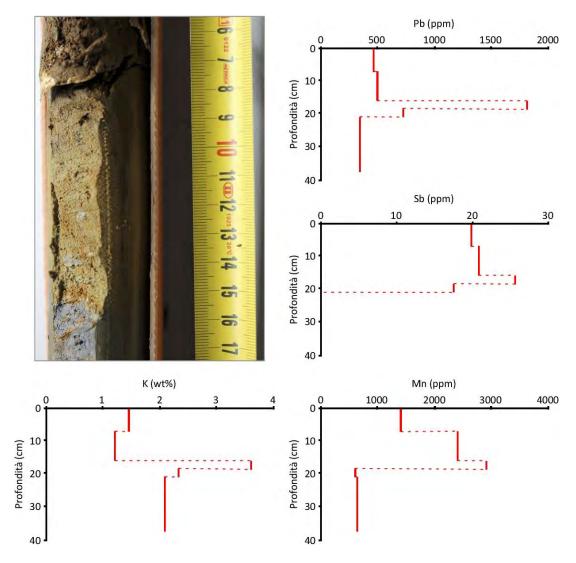


Figura 3.14. Aspetto macroscopico della carota di sedimento indisturbato (fra 6 e 17 cm circa) e concentrazione di Pb, Sb, K e Mn determinata tramite HHXRF.

Segue nella stratigrafia un orizzonte di accumulo prevalente di S e Ba. Esperimenti di acidificazione hanno evidenziato anche la presenza di solfuri, probabilmente di Fe, in questo livello. Queste stesse fasi solide possono trattenere o rilasciare gli EPT che contengono. L'orizzonte immediatamente più profondo è caratterizzato dall'accumulo di Pb, Sb e K. In questo orizzonte Pb e Sb possono essere associati, adsorbiti sulla superficie, a fasi argillose; in particolare, queste fasi solide hanno forte tendenza all'adsorbimento di Pb in un ampio intervallo di condizioni. I livelli ulteriormente profondi nella carota (non mostrati) sono caratterizzati dalle maggiori concentrazioni di Ca, possibilmente associato a carbonati.

Le analisi ad oggi disponibili non comprendono il Tl.

Sigla	Profondità (cm)	Mineralogia
POL1-A	0 – 7	Qtz, Ill, Cal, Ab, Chl, Brt, Dol, Py
POL1-B	7 – 16	Qtz, III, Brt, Py
POL1-C	16 – 18	III, Qtz, Brt, Py
POL1-D	18.5 – 21	Qtz, Ill, Brt, Dol, Ab, Chl, Py
POL1-E	21 – 38	Qtz, Ill, Cal, Chl, Dol, Chl, Tur, (Brt)

Tabella 3.1. Fasi mineralogiche identificate tramite XRD nella carota prelevata in località Pollino, in prossimità della stazione VTINC. Sigle: Ab, albite; Brt, barite; Cal, calcite; Chl, clorite, Dol, dolomite; Ill, illite; Py, pirite; Qtz, quarzo; Tur, "tormalina".

E' da notare come il livello POL1-C (16-18 cm di profondità) della carota di sedimento indisturbato abbia caratteristiche di composizione simili al materiale della vasca di sedimentazione di residui minerari a granulometria fine posta nell'abitato di Valdicastello Carducci, in destra idrografica del Torrente Baccatoio (Figura 3.15).

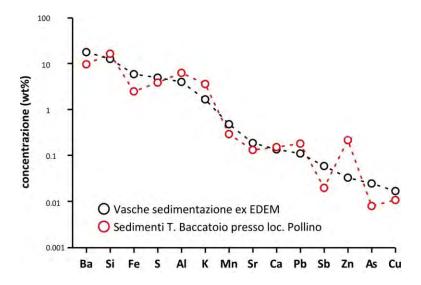


Figura 3.15. Concentrazione di alcuni EPT in campioni di sedimento prelevati dalle vasche di sedimentazione e nell'alveo del Torrente Baccatoio in località Pollino, posti a confronto.

Questa osservazione pone la questione se materiale refluo della lavorazione mineraria, in particolare relativo agli impianti di flottazione, sia stato riversato nel Torrente Baccatoio quando l'attività estrattiva era in corso.

Sono stati inoltre raccolti a titolo esplorativo, tramite benna, i sedimenti nell'alveo sommerso del Torrente Baccatoio in corrispondenza della SS N. 1 Aurelia (corrispondente alla stazione di campionamento VTAUR). I risultati analitici tramite HHXRF indicano (in mg/kg): Fe = 53700; As =

60; Mn = 860; Zn = 1020; Sb = 75; Pb = 220; Ba = 16400. Non sono disponibili dati di Tl. Questo dato, preliminare, indica la necessità di uno studio focalizzato sui sedimenti fino alla zona di costa, opportunamente pianificato in termini di modalità di prelievo, analisi e finalità.

3.4. Le acque interstiziali

Nel contesto della distribuzione degli EPT, come già riportato nella Relazione di Medio Periodo, un aspetto rilevante riguarda la definizione di sorgenti definite secondarie rispetto ai drenaggi minerari. Tra queste, i sedimenti di alveo sommersi possono avere un ruolo importante, date le caratteristiche geochimiche sopra mostrate. Per questo motivo alla caratterizzazione del sedimento indisturbato riportata in precedenza è stata associata l'estrazione delle acque interstiziali (di poro) trattenute nel sedimento stesso. Dati preliminari, discussi nella Relazione di Medio Periodo, evidenziavano in particolare concentrazioni anche elevate di TI in queste acque. Nella stessa stazione di prelievo della carota di sedimenti sono state quindi estratte le acque interstiziali dall'alveo sommerso (profondità nel sedimento: circa 15 cm e circa 40 cm) tramite un lisimetro (dettaglio in Figura 3.16).

Figura 3.16. Dettaglio rispetto alla Figura 3.11. Lisimetro per l'estrazione dell'acqua interstiziale nel sedimento sommerso dell'alveo del Torrente Baccatoio (loc. Pollino, stazione VTINC), per il confronto con le caratteristiche dell'acqua corrente.

I dati ottenuti delle acque interstiziali mostrano differenze anche significative rispetto alle acque superficiali per alcuni parametri. In particolare il contenuto di ossigeno disciolto nelle acque interstiziali risulta molto variabile, con concentrazioni minime misurate di 2.5 mg/L, in contrasto

con le caratteristiche invariabilmente ossigenate delle acque correnti (mediamente 9 mg/L). Questo dato testimonia che anche nei primi centimetri dei sedimenti dell'alveo sommerso, al di sotto della interfaccia con le acque superficiali e nella zona bentica, sono attivi processi che consumano ossigeno. Queste condizioni riducenti possono favorire la dissoluzione degli idrossidi di ferro e rilascio di Fe(II) e degli EPT adsorbiti (ad esempio As, come evidenziato in precedenza) alle acque interstiziali anche per reazioni combinate con la materia organica. Lo stesso processo influenza la stabilità degli ossidi di manganese, che hanno cinetiche di riduzione (e quindi di dissoluzione) maggiori rispetto agli ossidi-idrossidi di ferro. Questo comporta un rilascio di Mn(II) alle acque interstiziali. Dato il ruolo che gli ossidi di Mn hanno nel controllare il destino del Tl, agendo sia come adsorbenti che come ossidanti per questo elemento, il ciclo di precipitazione/dissoluzione di queste fasi solide può determinare delle variazioni di concentrazione di tallio osservata.

Le concentrazioni di alcuni EPT misurate nelle acque interstiziali e sovrastanti superficiali nel Torrente Baccatoio sono illustrate nella Figura 3.17.

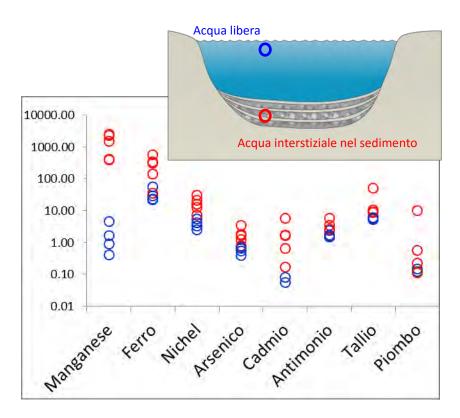


Figura 3.17. Concentrazione di alcuni EPT nelle acque interstiziali (simboli rossi) del sedimento sommerso e nelle acque libere sovrastanti (simboli blu). Nel riquadro è riportato l'assetto di campionamento.

Dalla Figura 3.17 si nota come la concentrazione degli EPT considerati sia maggiore nell'acqua interstiziale rispetto a quella libera, indicando come il sedimento, almeno nel tratto di alveo campionato, rilasci contaminanti all'acqua. In particolare, alcuni elementi come Mn e TI possono raggiungere concentrazioni elevate.

Le variazioni nel regime delle portate del Torrente Baccatoio possono favorire la rimobilizzazione di queste acque interstiziali presenti nel sedimento sommerso dell'alveo, provocando transienti di concentrazione anomala nel torrente (come già introdotto nella Relazione di Medio Periodo).

3.5. Speciazione del tallio in fase acquosa

Come è noto, il tallio è presente in natura in due diversi stati di ossidazione, Tl(I) e Tl(III). Le proprietà delle specie di Tl(I) e Tl(III) sono molto diverse, sia come comportamento nei principali processi attivi in un ecosistema, sia come tossicità. Alcuni testi riportano una tossicità più elevata per il Tl(III) rispetto al Tl(I), di per sé molto tossico.

Le specie di TI presenti in fase acquosa possono essere stimate sulla base della stabilità termodinamica dei diversi composti in funzione delle condizioni di pH, Eh e delle altre specie presenti nell'acqua. Come illustrato in Figura 3.18, considerando i valori di pH ed Eh misurati, nel caso del bacino del Torrente Baccatoio tutte le acque avrebbero TI(I) come unica specie stabile in soluzione.

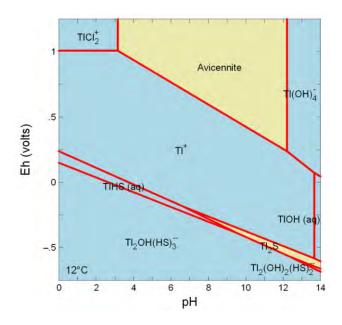


Figura 3.18. Relazioni di stabilità per le specie del tallio. Tutte le acque analizzate dovrebbero contenere solo TI(I) su base termodinamica. Questo non accade nella realtà.

Tuttavia, i dati termodinamici relativi alle costanti di equilibrio per le varie reazioni che comprendono le specie del tallio sono scarsi. In letteratura sono riportati diversi casi in cui è stato misurato in acque naturali contaminate da tallio la specie Tl(III), in contrasto con le indicazioni teoriche. Per questo è necessaria la misura sperimentale della effettiva speciazione. A differenza di Tl(I), Tl(III) è fortemente idrolizzato in fase acquosa; la specie più abbondante è Tl(OH)₃, ma sono state ipotizzate anche specie anioniche Tl(OH)₄, che risulterebbero condizionate da processi di adsorbimento. E' stato inoltre ipotizzato che Tl(III) possa formarsi per azione di batteri, quali ad esempio batteri capaci di ossidare manganese. Una volta formatosi, il Tl(III) può essere stabilizzato tramite complessazione con leganti organici, nonostante sia un forte ossidante.

I dati preliminari ottenuti nei laboratori HydroScience (CNRS) di Monpellier, e confermati dalle analisi eseguite a ICCOM-CNR-Pisa, indicano come in alcuni tratti del Torrente Baccatoio il TI sia prevalentemente nella forma TI(III) rispetto alle attese che prevedevano solo TI(I). Queste osservazioni richiedono un ulteriore dettaglio di studio e possono condizionare in modo importante anche le metodologie di abbattimento e rimozione di questo elemento.

4. I drenaggi minerari: caratterizzazione geochimica e stime quantitative

4.1. Ubicazione e contesto geologico

Come specificato in altre sezioni di questa Relazione, la sorgente primaria di contaminazione da EPT, in particolare TI, nell'area di studio è costituita dalle ingenti masse di pirite microcristallina con associati solfuri di Pb e Zn e solfosali di Pb, Sb, As, Zn, TI, Hg, Ag, etc., diffuse nel bacino del Torrente Baccatoio. Nel corso del progetto si è inoltre riscontrato che anche le masse di idrossidi di ferro (limonite), derivanti dall'ossidazione della pirite, contengono significative quantità di TI ed altri EPT (in particolare Zn e As). I corpi mineralizzati sono presenti sia nel sottosuolo interessato dalle passate coltivazioni minerarie delle miniere di M. Arsiccio e del Pollone, sia in affioramenti di estensione limitata, come quello presente lungo la strada tra Sant'Anna di Stazzema e la località Case Sennari (pirite e barite), o quelli diffusi in località Verzalla, anche in prossimità della sorgente Molini di Sant'Anna (limonite, magnetite, pirite, barite). Le masse di solfuri presenti in sottosuolo sono di gran lunga più importanti di quelle in affioramento e la loro ossidazione biotica/abiotica dà luogo al rilascio dei contaminanti e alla loro successiva dispersione nel mezzo acquoso che fuoriesce dalla miniere attraverso i drenaggi minerari.

Le miniere di M. Arsiccio e del Pollone sono situate in un territorio montuoso piuttosto accidentato e acclive e ricco di acqua; come spesso avviene per le miniere ubicate in questo tipo di contesto, il drenaggio delle acque interne avviene attraverso le gallerie alle quote più basse, spesso scavate per questo scopo specifico.

Drenaggi miniera di M. Arsiccio. La miniera di M. Arsiccio è costituita da alcuni cantieri che nel corso del tempo hanno sfruttato differenti tipi di mineralizzazione con varie tecniche estrattive. I cantieri più elevati si trovano nel settore meridionale fino alla quota di 640 m s.l.m., quello più basso, la galleria Sant'Erasmo, si trova alla quota di 482 m s.l.m. Il drenaggio principale di tutto il sistema di M. Arsiccio è costituito dalla galleria Sant'Erasmo con minori efflussi dalle gallerie Ribasso del Pianello 2 e Sant'Olga. La galleria rettilinea di Sant'Erasmo, lunga circa 370 m, e diretta verso est, fu scavata nel 1959-60 con il proposito di drenare le acque di tutte le sovrastanti gallerie. Il contesto geologico in cui si trovano le mineralizzazioni a pirite, barite, magnetite, ematite ed idrossidi di ferro di M. Arsiccio è estremamente articolato soprattutto per la complessa evoluzione tettonica che ha interessato questo settore dell'area apuana, ma anche per la variabilità delle

rocce che vi si trovano. Queste ultime sono costituite sia da rocce dominate da silicati (scisti a quarzo-muscovite-clorite, quarziti e metarioliti del basamento Paleozoico delle Alpi Apuane, meta-arenarie e ardesie della Formazione dello Pseudomacigno) sia da rocce carbonatiche (dolomiti Triassiche della Formazione dei Grezzoni, marmi, brecce marmoree).

Drenaggi miniera del Pollone. Anche la miniera del Pollone è costituita da vari cantieri che hanno sfruttato, nel XIX secolo, mineralizzazioni a galena argentifera e, in seguito, grosse masse lentiformi di pirite e barite. I cantieri più elevati si trovano alla quota di 269 m s.l.m. (cantiere Cava Cugnasca), quelli inferiori in corrispondenza della galleria di Ribasso (q. 174 m. s.l.m.). Quest'ultima galleria ha lo stesso ruolo della galleria Sant'Erasmo per la miniera di M. Arsiccio e drena gran parte del sistema minerario. Solo da una galleria posta alla quota di 228 m s.l.m., nell'area del Pozzo Francese, si osserva nel periodo autunnale-invernale un modesto efflusso di acqua. Il contesto geologico della miniera del Pollone appare relativamente più semplice di quello della miniere di M. Arsiccio in quanto le rocce incassanti sono in questo caso costituite da scisti a quarzo-muscovite-clorite e quarziti del basamento Paleozoico delle Alpi Apuane, mentre sono del tutto assenti sia rocce carbonatiche che le rocce della Formazione dello Pseudomacigno. Nonostante scisti e quarziti siano litotipi poco permeabili, le acque circolano attraverso i corpi rocciosi per la presenza di fratture beanti, faglie e zone tettonizzate. La galleria di Ribasso del Pollone è composta da un tratto rettilineo iniziale di circa 100 m in direzione nord che si biforca in due rami diretti verso est e verso ovest lunghi rispettivamente 125 e 140 m e in massima parte allagati o franati.

4.2. Caratteristiche geochimiche

Le caratteristiche geochimiche delle acque che effluiscono dai due drenaggi principali sono una funzione complessa di un elevato numero di variabili quali natura (mineralogia, chimismo, struttura) della mineralizzazione e delle rocce incassanti, presenza e quantità di colonie di batteri ferro-ossidatori, modalità di circolazione dell'acqua nei corpi mineralizzati, andamento delle precipitazioni atmosferiche, caratteristiche chimico-fisiche dell'acqua prima della sua interazione con le rocce mineralizzate, etc.

Nella Figura. 4.1 sono rappresentate le concentrazioni di una serie di elementi chimici misurate nel periodo del progetto nelle acque dei due drenaggi. Risulta ben evidente come queste acque abbiano caratteristiche geochimiche molto differenti. Nel dettaglio si sottolinea come gli EPT

presenti in concentrazioni elevate o elevatissime siano Fe, Mn, Tl, Cd, As, Zn, Sb, Pb, Cu, Ni, Co, Al. Il drenaggio del sistema M. Arsiccio risulta particolarmente arricchito in Fe, Mn, Sr e Tl rispetto a quello del sistema Pollone, che invece si contraddistingue per elevatissimi contenuti di Zn, Cd, As, Cu ed elevati di Pb, Ni, Co e Sb. Degne di nota sono anche le concentrazioni elevate di Th e U delle acque del drenaggio del Pollone.

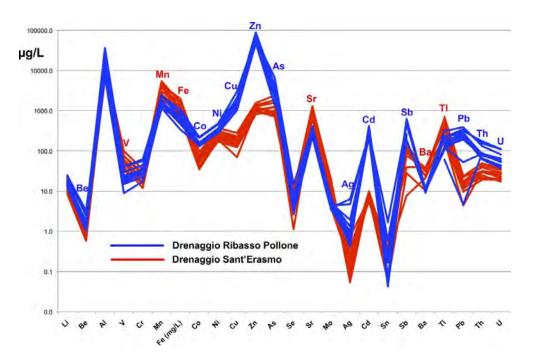


Figura 4.1. Concentrazione di una serie di elementi (inclusi EPT) nelle acque dei drenaggi delle miniere di M. Arsiccio e del Pollone.

Nella Tabella 4.1. sono riportate le concentrazioni medie (con deviazione standard) di questi elementi nei due drenaggi, considerando i dati disponibili.

	Drenaggio M. Arsiccio		Drenaggio Pollone	
	(N° analisi=12)		(N° analisi=13)	
	media	dev.st.	media	dev.st.
Li	14.9	4.5	16.9	4.1
Be	0.90	0.26	1.75	0.67
Al	11552	2668	17188	6915
V	51	24	22.7	9.7
Cr	20.8	6.8	34	13
Mn	3741	1241	1633	447
Fe (mg/L)	1173	394	664	191

Со	58	17	167	31
Ni	251	59	363	67
Cu	173	54	1632	558
Zn	1142	224	57354	12253
As	1316	526	3106	1316
Se	4.9	2.7	6.0	3.3
Sr	987	209	309	67
Мо	9.4	4.8	4.9	1.0
Ag	0.22	0.19	1.65	1.79
Cd	7.7	1.4	291	68
Sn	0.29	0.18	0.36	0.52
Sb	84	53	380	139
Ba	29.9	9.0	10.7	1.3
TI	425	195	176	65
Pb	15.3	6.1	232	106
Th	31.9	8.6	95	35
U	25.4	5.8	63	24

Tabella 4.1. Concentrazione media e deviazione standard (in mg/L per il Fe e in μg/L per gli altri elementi) delle acque dei drenaggi delle miniere di M. Arsiccio e del Pollone. In rosso sono indicati gli elementi significativamente più arricchiti in un drenaggio rispetto all'altro.

Sulla base delle conoscenze acquisite durante il periodo di studio si possono correlare gli arricchimenti in determinati EPT ed altri elementi con le caratteristiche mineralogiche e geochimiche dei corpi minerari presenti nelle due ex miniere. In particolare, le più elevate concentrazioni di TI delle acque di drenaggio della galleria Sant'Erasmo sono dovute alla ricchezza di solfosali di tallio presenti nella miniera di M. Arsiccio. Si ricorda che proprio in questa miniera, in corrispondenza del livello Sant'Olga, sono stati scoperti per la prima volta nelle Alpi Apuane minerali propri di TI di dimensioni macroscopiche. Le elevate concentrazioni di Mn e Sr dello stesso drenaggio sono da imputarsi alla presenza di carbonati manganesiferi e di ossi-idrossidi di Mn in alcuni settori di questa area mineraria. Per quanto riguarda le acque di drenaggio della miniera del Pollone, le elevatissime concentrazioni di Zn e Cd sono da correlarsi alla diffusa presenza di sfalerite cadmifera [(Zn,Cd)S] (Figura 4.2, 4.3), mentre Cu, Pb, Sb, Ni, Co derivano dalla ossidazione di solfuri e solfosali di questi elementi e della pirite che li contiene come impurezze. Le anomalie di Th e U nei drenaggi del Pollone sono da attribuirsi alla dissoluzione da parte di acque con pH < 2 di minerali quali apatite, titanite e monazite, presenti come fasi accessorie nelle rocce scistose che incassano la mineralizzazione.

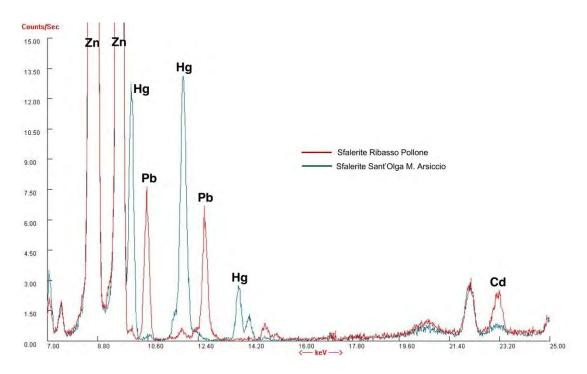


Figura 4.2. Spettro HHXRF di due campioni macroscopici di sfalerite (ZnS) provenienti dal livello Sant'Olga (miniera di M. Arsiccio, linea blu) e dal Ribasso del Pollone (miniera del Pollone, linea rossa). Si noti la natura mercurifera della prima e la natura cadmifera della seconda. Le elevate concentrazioni di Pb del campione del Ribasso del Pollone sono da attribuirsi alla presenza di galena (PbS).

Figura 4.3. Sfalerite cadmifera con galena e quarzo (SX, gall. Ribasso, min. del Pollone). Sfalerite mercurifera con calcite e dolomite (DX, gall. Sant'Olga, min. di M. Arsiccio).

4.3. Stime quantitative del rilascio di EPT dai drenaggi

Al fine di quantificare gli EPT che vengono rilasciati in un determinato periodo di tempo dai drenaggi acidi di miniera al Torrente Baccatoio, è necessario valutare le portate di questi ultimi (si veda in proposito anche il paragrafo 2.2.3.2) e il loro chimismo in funzione delle portate. Tale

valutazione risulta essenziale per la corretta pianificazione di un progetto di messa in sicurezza ambientale e bonifica.

Il flusso giornaliero è stato ottenuto moltiplicando le concentrazioni per le portate misurate ipotizzando che tali valori rimangano costanti nel corso delle 24 ore. Per i flussi dei periodi più lunghi si fa riferimento a 6 mesi sia per il periodo di magra che per quello di morbida. I dati utilizzati sono quelli misurati nel corso del presente Progetto.

4.3.1. Drenaggio galleria Sant'Erasmo (miniera di M. Arsiccio)

I grafici di Figura 4.4 sono stati realizzati incrociando i dati della portata con quelli chimici riferiti allo stesso giorno, assumendo che tali valori rimangano costanti nel corso delle 24 ore (flusso di elementi, inclusi EPT, giornaliero). I grafici mostrano l'andamento delle concentrazioni e del flusso giornaliero del drenaggio acido al variare della portata per Fe, As, Co, Cr, Cd e Tl. Tali dati indicano che il Fe in soluzione può superare i 500 kg al giorno, As circa 600 g/giorno e Tl circa 230 g/giorno mentre gli altri elementi mostrano quantitativi decisamente meno elevati (< 30 g/giorno per ciascun elemento).

La generale correlazione lineare positiva tra portata e flusso giornaliero consente di valutare, sulla base della portata media nei periodi di magra e di morbida del torrente (ciascuno della durata teorica di sei mesi), il flusso giornaliero medio e il flusso medio stagionale nei due periodi (Tabelle 4.2 e 4.3). Per tali calcoli è stata stimata una portata media per il periodo di magra di 0.25 l/s e di morbida di 2.80 l/s. Le stime di portata si riferiscono all'intero anno di studio (vedi paragrafo 2.2.3.2).

	Na	K	Ca	Mg	Cl	S	Si	Al
magra	128	128	6148	3057	264	50688	139	225
morbida	2199	531	51052	25935	2955	567704	1554	2519
	Cr	Mn	Fe	Со	Ni	Cu	Zn	As
magra	<1	58	22321	1	5	3	22	27
morbida	4	648	249992	13	54	38	245	298
	Cd	Sb	Ва	TI	Pb	Th	U	
magra	<1	2	<1	9	<1	<1	<1	
morbida	2	24	8	106	4	7	5	

Tabella 4.2. Stima della massa media (g) degli EPT ed altri elementi che quotidianamente defluiscono dal drenaggio minerario della galleria Sant'Erasmo. La portata media del periodo di magra e di morbida è stata stimata sulla base dei rilevamenti dell'ultimo anno.

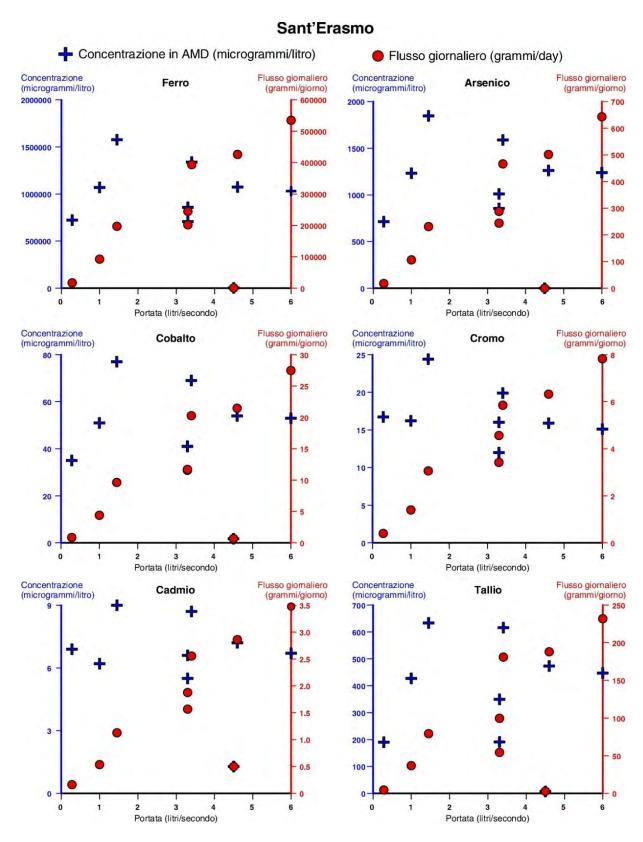


Figura 4.4. Variazione delle concentrazioni (μg/l) e del flusso giornaliero (g/giorno) di Fe, As, Co, Cr, Cd e Tl al variare della portata (l/s) del drenaggio della galleria Sant'Erasmo (M. Arsiccio).

	Al	Cr	Fe	Со	Ni	Cu	Zn	As
Stagione di magra	38	0.1	3777	0.2	0.8	0.6	3.7	4.5
Stagione di morbida	458	0.7	45461	2.3	9.7	7.0	44.6	54.1
Bilancio annuale	496	0.8	49238	2.5	10.5	7.6	48.3	58.6
	Cd	Sb	Ва	TI	Pb	Th	U	
Stagione di magra	<0.1	0.4	0.1	1.6	0.1	0.1	0.1	
Stagione di morbida	0.3	4.3	1.5	19.2	0.7	1.3	1.0	
Bilancio annuale	0.3	4.7	1.6	20.8	0.8	1.4	1.1	

Tabella 4.3. Stima della massa (kg) degli EPT ed altri elementi che durante tre diversi periodi temporali (6 mesi di magra, 6 mesi di morbida e un anno) defluiscono dal drenaggio minerario della galleria Sant'Erasmo. La portata media del periodo di magra e di morbida è stata stimata sulla base dei rilevamenti dell'ultimo anno.

4.3.2. Drenaggio galleria di Ribasso (miniera del Pollone)

Anche per il Ribasso del Pollone è possibile incrociare i dati delle portate con quelli chimici ed ottenere una indicazione sul flusso giornaliero di EPT ed altri elementi al variare delle portate (Figura 4.5 per Fe, As, Co, Cr, Cd e Tl). Tali dati indicano che possono essere immessi nell'ambiente circostante fino a 80 kg al giorno di Fe e circa 350 g/giorno di As mentre Co, Cr, Cd e Tl mostrano ciascuno quantitativi inferiori a 30 g/giorno.

Anche per questo drenaggio è possibile calcolare il flusso giornaliero medio nei periodi di magra e di morbida del torrente sulla base della portata media giornaliera di questi periodi (0.34 l/s e 0.96 l/s, rispettivamente). Le stime di portata si riferiscono all'intero anno di studio (vedi paragrafo 2.2.3.2).

	Na	K	Ca	Mg	Cl	S	Si	Al
Magra	298	102	4263	803	568	47479	299	421
morbida	1022	150	9386	1819	1624	135750	856	1202
	Cr	Mn	Fe	Со	Ni	Cu	Zn	As
Magra	<1	38	17467	4	9	44	1451	71
morbida	2	109	49941	12	27	126	4148	203
	Cd	Sb	Ва	TI	Pb	Th	U	
Magra	7	8	<1	5	7	2	1	
morbida	21	23	<1	14	21	6	4	

Tabella 4.4. Stima della massa (g) degli elementi che quotidianamente defluiscono dal drenaggio minerario della galleria di Ribasso (min. del Pollone). La portata media del periodo di magra e di morbida è stata stimata sulla base dei rilevamenti dell'ultimo anno.

Ribasso Pollone Concentrazione in AMD (microgrammi/litro) Flusso giornaliero (grammi/day) Concentrazione (microgrammi/litro) Flusso giornaliero (grammi/giorno) Concentrazione (microgrammi/litro) Flusso giornaliero (grammi/giorno) Ferro Arsenico 1000000 4500 4000 3500 750000 60000 3000 2500 500000 2000 1500 100 250000 20000 1000 500 0 0.5 1.0 0.5 1.0 1.5 0 1.5 Portata (litri/secondo) Portata (litri/secondo) Flusso giornaliero (grammi/giorno) Concentrazione Flusso giornaliero Concentrazione Cobalto Cromo (microgrammi/litro) (grammi/giorno) (microgrammi/litro) 200 60 2.0 150 40 1.5 100 20 50 0 0.5 1.0 1.5 0 0.5 1.0 1.5 Portata (litri/secondo) Portata (litri/secondo) Concentrazione Flusso giomaliero Concentrazione Flusso giornaliero Tallio Cadmio (microgrammi/litro) (microgrammi/litro) (grammi/giorno) (grammi/giorno) 500 250 30 400 200 150 300 200 100 100 50 0 0 0.5 1.0 1.5 0 0.5 1.0 1.5 Portata (litri/secondo) Portata (litri/secondo)

Figura 4.5. Variazione delle concentrazioni (μg/l) e del flusso giornaliero (g/giorno) di Fe, As, Co, Cr, Cd e Tl al variare della portata (l/s) presso la galleria di Ribasso (miniera del Pollone).

	Al	Cr	Fe	Со	Ni	Cu	Zn	As
Stagione di magra	76	0.1	3144	0.8	1.7	7.9	261	13
Stagione di morbida	216	0.4	8989	2.2	4.8	22.6	747	37
Bilancio annuale	292	0.5	12133	3.0	6.5	30.5	1008	50
	Cd	Sb	Ва	TI	Pb	Th	U	
Stagione di magra	1.3	1.4	<0.1	0.9	1.3	0.4	0.3	
Stagione di morbida	3.7	4.1	<0.1	2.6	3.7	1.1	0.7	
Bilancio annuale	5.0	5.5	<0.1	3.5	5.0	1.5	1.0	

Tabella 4.5. Stima della massa (in kg) degli elementi che durante tre diversi periodi temporali (6 mesi di magra, 6 mesi di morbida e 12 mesi) defluiscono dal drenaggio minerario della galleria Ribasso (miniera del Pollone). La portata media del periodo di magra e di morbida è stata stimata sulla base dei rilevamenti dell'ultimo anno.

4.3.3. Rilascio totale di EPT dai drenaggi

Il bilancio di massa eseguito per i due principali drenaggi delle miniere di M. Arsiccio e del Pollone ha permesso di ottenere una prima stima quantitativa degli elementi che giornalmente e annualmente defluiscono dai due drenaggi minerari nelle acque del Torrente Baccatoio.

Il principale apporto di EPT, per entrambi i drenaggi, avviene durante il periodo di morbida e, principalmente, dal drenaggio della galleria Sant'Erasmo. Durante il periodo di magra, invece, l'apporto totale di EPT dei due drenaggi è sostanzialmente simile.

Dall'analisi comparativa (Tabella 4.6) si osserva che la maggior parte dei metalli è trasportata dagli effluenti della galleria Sant'Erasmo ad eccezione dello Zn (95%), Cd (94%), Pb (87%), Cu (80%), Co (54%) e Sb (54%) che provengono principalmente dalla galleria di Ribasso del Pollone.

	Al	Cr	Fe	Со	Ni	Cu	Zn	As
Tot. drenaggi (kg)	788	1.3	61371	5.5	17	38	1056	109
Sant'Erasmo (%)	63	60	80	46	62	20	5	54
Ribasso (%)	37	40	20	54	38	80	95	46
	Cd	Sb	Ва	TI	Pb	Th	U	
Tot. drenaggi (kg)	5.3	10	1.6	24	5.8	2.9	2.1	
Sant'Erasmo (%)	6	46	>98	86	13	49	53	
Ribasso (%)	94	54	<2	14	87	51	47	

Tabella 4.6. Massa totale (kg) di EPT che dai drenaggi defluiscono annualmente nel Torrente Baccatoio e loro incidenza percentuale relativa.

Come è già stato descritto nel paragrafo 2.2.3.2, si evidenzia la forte variabilità stagionale delle portate dei drenaggi; in particolare, per il drenaggio Sant'Erasmo sono state misurate consistenti

variazioni da 0.08 l/s a 6 l/s mentre per quello Ribasso da 0.26 l/s a 2 l/s. Si sottolinea che nel periodo preso in considerazione (l'intero anno del presente Progetto) non ci sono stati eventi pluviometrici particolarmente rilevanti e quindi le portate massime attese sono superiori.

Sulla base delle portate medie stimate si può derivare che oltre 45000 m³ di acque acide fuoriescano annualmente dal drenaggio Sant'Erasmo ed oltre 20000 m³ da quello del Ribasso del Pollone. Annualmente circa 160 t di elementi trasportati in soluzione fuoriescono dal drenaggio Sant'Erasmo e oltre 50 t da quello Ribasso, principalmente dovuti all'apporto di S e Fe. Associati a questi elementi maggiori sono presenti anche EPT con quantitativi annuali non trascurabili (~1 t di Zn, ~100 kg di As, ~24 kg di Tl, ~10 kg di Sb e ~5 kg di Cd).

Questi dati sono da tenere in considerazione per la progettazione di eventuali impianti di trattamento delle acque capaci di gestire i consistenti quantitativi di elementi in gioco e la forte variabilità delle portate durante i diversi periodi dell'anno e il loro carico di elementi in soluzione. In conclusione, si ricorda che i due drenaggi minerari presi in considerazione (galleria Sant'Erasmo-miniera di M. Arsiccio; galleria Ribasso - miniera del Pollone) costituiscono i principali apporti di acque acide al Torrente Baccatoio, ma al fine di uno studio quantitativo dettagliato dovranno essere integrati con i dati degli altri drenaggi (in particolare Ribasso Pianello 2 e Sant'Olga - miniera di M. Arsiccio) e con i minori apporti dovuti al dilavamento da parte di acque superficiali degli affioramenti di rocce mineralizzate.

Si suggerisce pertanto di integrare i dati di questo progetto con osservazioni eseguite su periodi temporali più estesi capaci di valutare con maggior dettaglio le variazioni di portata e chimiche osservate nel presente studio. Si rimarca, inoltre, che queste stime sono state ottenute dall'analisi delle acque dei drenaggi minerari filtrate e non prendono pertanto in considerazione l'eventuale carico in sospensione presente.

5. Esperimenti di laboratorio

5.1. Esperimenti di rimozione del tallio dalle acque

La rimozione selettiva del Tl da acque contaminate è oggetto di numerosi studi scientifici che fanno uso di materiali adsorbenti e di procedure diversificate. Tutti gli studi pubblicati hanno come finalità quella di ottenere un metodo che 1) rimuova efficientemente il Tl (rimozione > 90%); 2) sia economicamente e logisticamente sostenibile; 3) non causi modificazioni chimico-fisiche nell'acqua tali da pregiudicarne la qualità. Dopo aver effettuato una revisione critica della vasta letteratura esistente sono stati intrapresi alcuni esperimenti di rimozione del Tl da due diverse tipologie di acqua: A) acqua del Torrente Baccatoio prelevato in corrispondenza della base della discarica mineraria della miniera di M. Arsiccio (strada provinciale per Sant'Anna di Stazzema); B) acqua della sorgente Molini di Sant'Anna.

5.1.1. Esperimenti di rimozione del tallio dall'acqua del Torrente Baccatoio

In tutti gli esperimenti una quantità costante di 500 mg di ciascun materiale adsorbente da testare è stata pesata in becker di vetro Pyrex da 50 ml. A questa quantità sono stati aggiunti 20 ml di campione di acqua contaminata del torrente (campione PM 3). La miscela materiale adsorbente-acqua è stata agitata con una bacchetta di vetro e quindi lasciata in quiete per 60 min. alla temperatura di 20 \pm 1 °C. Il supernante è stato filtrato con filtro di Teflon da 0.20 μ m. Due ml di soluzione così filtrata sono stati diluiti 1:1 con H₂O ultrapura (Milli-Q, Millipore, > 18. 2 M Ω cm) ed analizzati tramite ICP-MS (Perkin-Elmer NexION 300x).

Il campione di acqua PM 3 è stato prelevato il giorno 9 dicembre 2014 sul torrente alla base della discarica della miniera di M. Arsiccio alla quota di 500 m s.l.m. Al momento del campionamento l'acqua aveva un valore di pH di 3.06 ed una temperatura di circa 11 °C. Il contenuto di Tl di questo campione è di 58 µg/L. L'analisi completa di questo campione è riportata in Tabella 5.1.

	Li	Fe	Mn	Со	Ni	Cu	Zn	As	Sr	Cd	Sb	Ва	TI	Pb
PM 3	9.3	6980	714	6.6	34	11.9	194	0.47	437	1.11	0.41	11.3	58	7.3

Tabella 5.1. Concentrazione elementi in traccia nell'acqua del Torrente Baccatoio usata negli esperimenti di rimozione del Tl.

Come materiali adsorbenti sono stati usati: 1) 3 differenti resine a scambio cationico, forma H⁺; 2) segatura di legno trattata con NaOH e non trattata; 3) biossido di manganese (MnO₂); 4) biossido idrato di manganese amorfo (HMO); 5) dolomite manganesifera di M. Arsiccio.

- Sono state testate le seguenti resine:
- 1) Amberlite IR 120H; 2) Dowex 50WX8 100 mesh; 3) Dowex 50WX8 200 mesh.
- La segatura è stata setacciata con vaglio da 18 mesh (1 mm) per escludere le porzioni più grossolane, lavata con H_2O ultrapura ed essiccata in stufa a 100 °C per 8 ore. Una aliquota di segatura lavata ed essiccata è stata trattata con una soluzione di NaOH 1 M per 2 ore (rapporto segatura/NaOH = 1:10 m/v). Al termine del trattamento questa aliquota è stata lavata abbondantemente con H_2O ultrapura ed essiccata in stufa a 100 °C per 8 ore. Negli esperimenti è stata quindi utilizzata sia la segatura non trattata che quella trattata con NaOH.
- E' stato utilizzato MnO₂ commerciale (Reagenti Carlo Erba) di grado analitico. Dato che il composto MnO₂ si presenta in numerose forme cristalline sia naturali che artificiali, il materiale è stato sottoposto ad analisi tramite diffrazione di raggi X. Il diffrattogramma (Figura 5.1) mostra dei picchi molto allargati, indice di materiale poco cristallino, con picchi di diffrazione indicanti una struttura tipo ramsdellite.

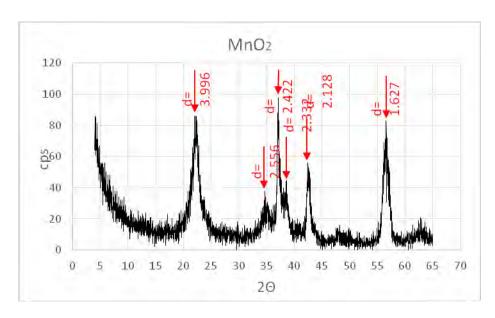


Figura 5.1. Diffrattogramma a raggi X delle polveri del MnO₂ (Carlo Erba) usato negli esperimenti.

- Il biossido idrato di manganese amorfo (HMO) è stato preparato direttamente in laboratorio. 20 ml di soluzione di $Mn(II)Cl_2$ 2 M sono stati miscelati con 60 ml di una soluzione binaria 1:1 di NaOH (10% m/v) e NaOCl (13% Cl attivo). Il precipitato nero che si forma è il biossido idrato di Mn (Mn(IV)O₂ nH₂O). Il precipitato è stato lavato prima con H₂O ultrapura su filtro Whatman N. 41, quindi con HCl 0.1 M, e alla fine essiccato in stufa a 60 °C.
- In alcune aree corrispondenti ai cantieri minerari più antichi della miniera di M. Arsiccio affiora diffusamente una varietà fortemente manganesifera delle rocce dolomitiche della Formazione dei Grezzoni (Norico). Questa roccia si presenta di colore nero, a volte con porzioni rosate, e in alcuni luoghi si presenta come una breccia. Talvolta ospita cristallini euedrali di granato manganesifero (spessartina). Alcuni campioni di questa roccia sono stati ridotti in polvere fine (20-30 μ m) con un mortaio di agata. La polvere è stata usata tal quale negli esperimenti. All'esame tramite diffrazione di raggi X (Figura 5.2) la roccia risulta costituita da dolomite con meno del 15% di ossidi e idrossidi di manganese. Tramite HHXRF è stato determinato un contenuto di Mn di circa 7 wt%.

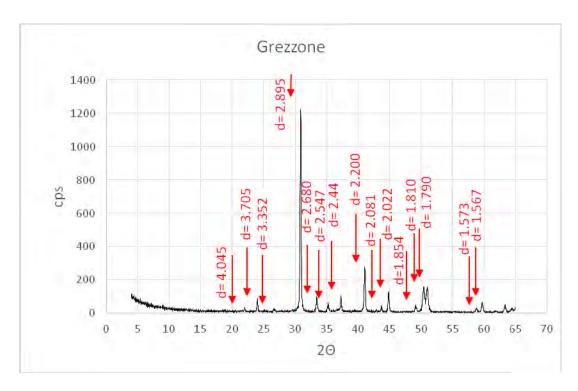


Figura 5.2. Diffrattogramma a raggi X delle polveri della dolomite manganesifera della Formazione dei Grezzoni usata negli esperimenti.

Tutti gli 8 materiali adsorbenti usati hanno mostrato la capacità di sottrarre TI dalla soluzione iniziale. Tuttavia solo la dolomite manganesifera, la resina Dowex 50WX8 200 mesh, e il biossido di manganese sono riusciti a ridurre la concentrazione di TI sotto la concentrazione limite per le acque sotterranee (D.Lgs. 152/2006) di 2 μ g/L (Tab. 6.2, Figura 5.3). Per questi tre materiali, l'efficienza di ritenzione del TI è stata > 99% (Figura 5.4).

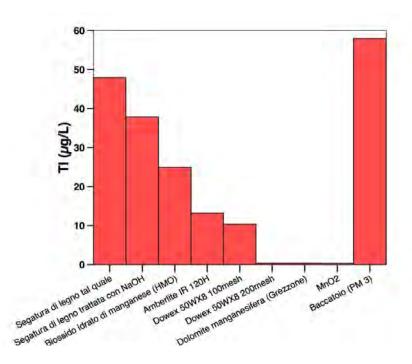


Figura 5.3. Concentrazione di TI (μ g/L) nei campioni di acqua contaminata dopo il trattamento.

Materiale	Tallio (μg/L)	Efficienza (%)
Acqua Torrente Baccatoio tal quale (PM 3)	58	
Segatura di legno tal quale	48	17.1
Segatura di legno trattata con NaOH	38	35.3
Biossido idrato di manganese (HMO)	25.0	56.8
Amberlite IR 120H	13.3	77.1
Dowex 50WX8 100mesh	10.5	81.9
Dowex 50WX8 200mesh	0.52	99.1
Dolomite manganesifera (Grezzone)	0.48	99.2
MnO ₂	0.44	99.2

Tabella 5.2. Concentrazioni di Tl (μg/L) nei campioni di acqua trattati con i vari materiali adsorbenti ed efficienza di rimozione del Tl.

I materiali meno efficienti si sono dimostrati i due tipi di segatura con una migliore resa per quella pre-trattata con NaOH.

I valori di pH delle soluzioni dopo il trattamento sono risultati acidi, ma più elevati del valore iniziale, per i campioni trattati con HMO e con la segatura (pH = 3.18-4.74), acidi ma con valori inferiori per i campioni trattati con MnO₂, e con le resine cationiche (pH = 2.84-1.89). L'acqua trattata con la dolomite manganesifera ha assunto un valore di pH basico (pH = 8.01; Tabella 5.3).

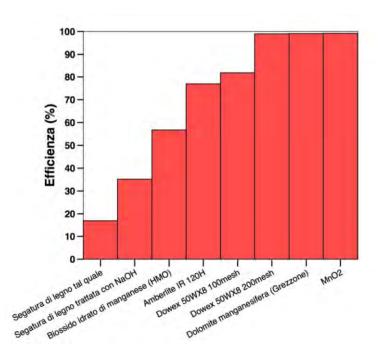


Figura 5.4. Efficienza di rimozione del TI dall'acqua contaminata per i differenti materiali usati.

Materiale	рН
Segatura di legno tal quale	3.37
Segatura di legno trattata con NaOH	4.74
Biossido idrato di manganese (HMO)	3.18
Amberlite IR 120H	2.09
Dowex 50WX8 100mesh	1.92
Dowex 50WX8 200mesh	1.89
Dolomite manganesifera (Grezzone)	8.01
MnO ₂	2.84

Tabella 5.3. Valori di pH misurati nei campioni di acqua dopo il trattamento.

Alcuni studi condotti su segatura di legno di *Cedrus deodar* indicano capacità di assorbimento del TI molto maggiori di quelle osservate negli esperimenti condotti con segatura di conifere della Toscana. Come questi autori, anche negli esperimenti effettuati è stata osservata una migliore resa

per la segatura pre-trattata con NaOH. Le cause del minore assorbimento di Tl negli esperimenti con la segatura di conifere rispetto a quelli di letteratura risiedono probabilmente in due fattori: 1) le differenti specie arboree usate; 2) le diverse condizioni di pH usate negli esperimenti. Gli autori sopra citati hanno infatti dimostrato una forte dipendenza dell'assorbimento della segatura (in particolare di quella trattata) con l'aumentare del pH, con valori ottimali intorno a pH > 5. Gli esperimenti del presente studio sono stati invece condotti a pH compreso tra 3.1 e 4.7. Secondo quanto riportato in letteratura a pH inferiori a 3 i gruppi carbossilici del legno (possibili siti di scambio ionico insieme a quelli amminici) si protonano e riducono la loro capacità di fissare cationi metallici.

Anche per gli esperimenti condotti con HMO è stato osservato un'efficienza nella rimozione del TI inferiore a quanto osservato da altri autori. Anche in questo caso l'efficienza di questo adsorbente è funzione del pH. In particolare la minima capacità di ritenzione dell'HMO è stata osservata nell'intervallo di pH 3-4, proprio quello che caratterizza l'acqua contaminata naturale usata nei nostri esperimenti. Secondo alcuni Autori l'assorbimento del TI su HMO avviene sia per scambio ionico, sia per coinvolgimento dei legami Mn-O negli ottaedri MnO₆. Nel primo caso si ha:

$$\equiv Mn - OH + Tl^{+} \iff \equiv Mn - O - Tl + H^{+} \tag{1}$$

In particolare per valori di pH bassi (2-3) il TI⁺ adsorbito può essere ossidato a TI₂O₃ che viene depositato sulla superficie dell'HMO

$$2MnO_{2(s)} + 2Tl^{+} + 2H^{+} \Leftrightarrow Tl_{2}O_{3(s)} + H_{2}O$$
 (2)

Si noti come nel processo (1) si abbia rilascio di acidità, mentre con il processo 2) aumenta l'alcalinità.

Il trattamento con la roccia dolomitica manganesifera sembra molto promettente per almeno tre ragioni: 1) rimuove molto efficientemente e rapidamente il TI (efficienza 99.2 %); 2) è molto economica essendo il materiale disponibile in loco in gran quantità; l'acqua contaminata passa da un pH acido (3.1) a un pH basico (8.0) al termine del trattamento.

5.1.2. Esperimento di rimozione del tallio dalle acque della sorgente Molini di Sant'Anna

La sorgente Molini di Sant'Anna (VSMSA) riveste, per la sua ingente portata anche nel periodo estivo, una importanza strategica per il territorio e l'ecosistema. Purtroppo, la presenza di tallio nelle sue acque ne determina un ulteriore fonte di inquinamento in aggiunta ai drenaggi minerari.

Per tale motivo, al fine di fornire alcune indicazioni in vista di un possibile progetto di bonifica della sorgente per quanto riguarda il Tl, sono stati fatti test di laboratorio di rimozione utilizzando dolomite manganesifera di M. Arsiccio.

Nell'esperimento, una aliquota fissa di 20 ml di acqua della sorgente (campionata il 30 dicembre 2015, campione VSMSA301215, pH = 8.10) è fatta percolare per 5 ore tramite una pompa peristaltica attraverso 2.00 g di dolomite manganesifera ridotta alla granulometria compresa tra 0.5 e 1 mm e pre-lavata con H_2O ultrapura (Figura 5.5). La dolomite era contenuta in un tubo verticale di polietilene del diametro di 10 mm. Al termine dell'esperimento l'acqua è stata filtrata con filtro di Teflon da 0.20 μ m ed analizzata tramite ICP-MS (Perkin-Elmer NexION 300x).

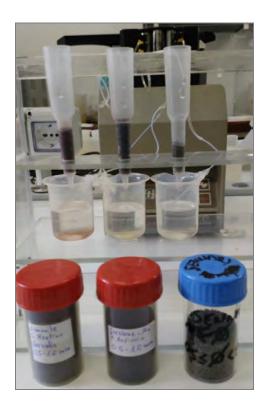


Figura 5.5. Apparato sperimentale.

Le analisi ICP-MS dell'acqua VSMSA301215 prima e dopo il trattamento sono riportate in Tabella 5.4 e rappresentate graficamente in Figura 5.6. Il risultato più importante riguarda la rimozione del TI che passa da 18.6 μ g/L a 0.53 μ g/L (rimozione del 97%). Oltre a quello del TI si assiste ad un decremento della concentrazione di Mn, Co, Ni, Fe, Cd e Pb. Gli unici elementi che aumentano leggermente dopo il trattamento sono V, As, Mo, U, Ba e Sr. Tuttavia dopo il trattamento, tutti gli

elementi determinati sono risultati sotto le soglie di concentrazione accettabili per le acque potabili. Nel corso dell'esperimento il valore del pH (8.1) dell'acqua è rimasto costante.

	VSMSA301215	VSMSA301215
	pre-trattamento	post-trattamento
Li	0.99	1.08
V	< 0.03	1.57
Cr	0.07	0.11
Mn	52	< 0.2
Fe	45	20.6
Со	0.38	0.09
Ni	7.7	2.55
Cu	< 3	< 3
Zn	< 15	< 15
As	< 0.04	0.41
Sr	124	267
Мо	< 0.2	21.2
Sn	< 0.03	< 0.03
Cd	0.09	0.05
Sb	0.30	0.29
Ва	55	131
TI	18.6	0.53
Pb	1.66	< 0.1
Th	< 0.02	< 0.02
U	0.47	1.94

Tabella 5.4. Contenuto in elementi in traccia dell'acqua della sorgente Molini di Sant'Anna prima e dopo il trattamento con la dolomite manganesifera.

Figura 5.6. Concentrazione di una serie di elementi in traccia nell'acqua del campione VSMSA301215 prima e dopo il trattamento con dolomite manganesifera. Si noti la diminuzione della concentrazione di Tl da 18.6 a $0.53 \mu g/L$.

Questo esperimento, preliminare e realizzato in laboratorio su piccoli quantitativi di acqua, andrebbe ripetuto in condizioni diverse, con maggiori quantitativi e in situazione dinamica delle acque, ma certamente può porre le basi per un intervento di bonifica della sorgente Molini di S. Anna.

5.2. Simulazione degli effetti di mescolamento tra acqua del Torrente Baccatoio e acqua della sorgente Molini di Sant'Anna

Sono stati effettuati degli esperimenti di laboratorio per la simulazione degli effetti del mescolamento dell'acqua della sorgente Molini di Sant'Anna e del Torrente Baccatoio campionato alla base della discarica di M. Arsiccio (equivalente alla stazione VTBDA), in particolare per quanto riguarda le variazioni di pH e ps. In Tabella 5.5 sono riportati i rapporti tra il volume totale di acqua aggiunta (V_{atot}) della sorgente (pH = 8.1, ps = 6.73) e il volume iniziale di acqua del Torrente Baccatoio (V_{B}). Sono state effettuate due serie di test in giorni diversi, utilizzando volumi iniziali diversi di acqua del torrente ed alla temperatura del laboratorio di circa 25 °C. Nel grafico di Figura 5.7 è riportata la variazione del pH al variare del rapporto di mescolamento. Sullo stesso grafico è riportata la curva teorica di mescolamento tra una soluzione di acido solforico (pH iniziale = 2.6) e una soluzione di bicarbonato di sodio. Il modello, semplificato, ha utilizzato la formula di Davies per i coefficienti di attività e ha trascurato i complessi tra metallo, solfato e bicarbonato. I dati termodinamici delle costanti K_{W} prima e seconda dissociazione dell'acido carbonico sono stati ripresi dalla letteratura. Per l'acido solforico sono stati utilizzati i dati del database di EQ3. I valori iniziali sono fittati supponendo un valore di concentrazione della soluzione dei bicarbonato di sodio di 1 meq/l.

Nel grafico di Figura 5.8 è riportato l'andamento p ε -pH. Intorno a pH=3 si osserva una diminuzione rapida di p ε che avviene in corrispondenza della precipitazione di idrossidi di ferro, implicando la coesistenza in soluzione di Fe(III) con Fe(II). Questa osservazione ha implicazioni sulle modalità di trasporto del Fe in soluzione da parte delle acque del torrente.

Dai dati e dal grafico di Figura 5.7 si nota anche la diminuzione di pH associata alla precipitazione di idrossidi di Fe, nel caso reale immediatamente tamponata, e come siano necessari volumi in eccesso di acqua della sorgente Molini di Sant'Anna per indurre un aumento del pH nelle acque del torrente a valori prossimi alla neutralità.

In funzione delle portate relative delle acque dei drenaggi e della sorgente si avrà quindi una casistica di pH delle acque del torrente. Si può comunque dedurre che nelle condizioni tipiche di portate l'effetto dello scarico delle acque della sorgente nel torrente porti ad un aumento del pH a valori che determinano la precipitazione di idrossidi di ferro e altri EPT legati con il ciclo di questo elemento che vengono quindi rimossi dall'acqua. Ciò è confermato dalle osservazioni di campagna.

	V_{atot}/V_{B}	рε	рН
	0	14.41	2.60
	0.500	14.31	2.83
	0.625	14.28	2.89
	0.875	14.19	3.00
	1.125	13.97	3.06
serie	1.375	13.28	3.08
Se	1.625	12.86	3.09
	2.125	12.54	3.19
	2.625	12.32	3.33
	3.875	11.80	4.39
	5.125	9.19	5.87
	7	7.54	6.73
4)	0.167	14.47	2.58
serie	0.333	14.49	2.67
SE	0.500	14.46	2.76
	0.667	14.44	2.84

Tabella 5.5. Dati del processo di mescolamento tra acqua del Torrente Baccatoio e acqua della sorgente Molini di Sant'Anna. Sono state effettuate due serie di test in giorni diversi, utilizzando volumi iniziali diversi di acqua del torrente ed alla temperatura del laboratorio di circa 25 °C.

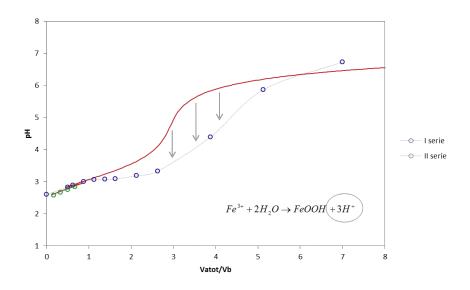


Figura 5.7. Andamento del pH per un processo di mescolamento tra l'acqua del Torrente Baccatoio (equivalente VTBDA, condizioni di acqua acida) e l'acqua della sorgente Molini di Sant'Anna. Sull'asse delle ascisse è riportato il valore del rapporto di mescolamento. In rosso la curva "teorica" di mescolamento tra acido solforico (pH=2.6) e una soluzione di NaHCO₃ 1 meg/l.

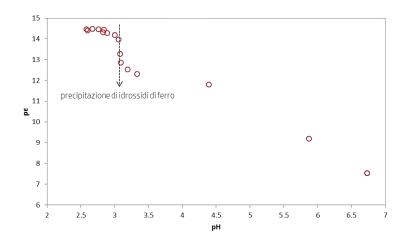


Figura 5.8. Diagramma pH vs pɛ. pɛ esprime il potenziale di ossido-riduzione, in relazione ai valori di Eh dalla relazione: Eh=0.059 pɛ (in V, a 25° C).

5.3. Esperimenti di rimozione di Fe e Mn attraverso processi di precipitazione indotti

5.3.1. Esperimenti con KMnO₄

Come già evidenziato, la precipitazione e rimozione di ossidi e idrossidi di ferro e manganese dalle acque ha un ruolo fondamentale per il destino di una serie di EPT. Nel caso di particelle di ossidi di manganese, le implicazioni dirette riguardano anche la rimozione di TI, come noto dalla letteratura e mostrato anche dagli esperimenti descritti in precedenza. Gli esperimenti di seguito descritti hanno lo scopo di verificare gli effetti della precipitazione del manganese indotta dall'aggiunta di $KMnO_4$ in ambiente alcalino. Pertanto NaOH e $KMnO_4$ sono stati aggiunti in modo tale da raggiungere valori di pH intorno ad 11.0 e valori di Eh (p ϵ) tali da ricadere nella zona in cui la specie dominante è $MnO_2(c)$.

Nel caso del Torrente Baccatoio, a 100 mL di acqua del torrente sono stati aggiunti 0.83 mL di NaOH 4N fino a raggiungere un valore di pH = 12.0. In queste condizioni il p ε misurato è stato di 3.81. Sono stati quindi aggiunti volumi successivi di KMnO₄ 0.01N fino alla precipitazione del corrispondente ossido (Tabella 5.6).

Torrente Baccatoio (100 mL)					
pε = 14.17; pH = 2.7					
Volume aggiunto (μL) pε pH					
+830 NaOH	3.81	12.0			
+500 KMnO ₄	7.14	11.9			
+500 KMnO ₄	8.51	11.9			
+500 KMnO ₄	9.14	11.9			

+500 KMnO ₄	9.60	11.9
+500 KMnO ₄	9.91	11.9
+500 KMnO ₄	10.07	11.9

Tabella 5.6. Valori di p ϵ e pH dopo aggiunta di KMnO₄ 0.01N all'acqua del Torrente Baccatoio.

Molini di Sant'Anna (100 mL)					
pε = 6.93; pH = 8.2					
Volume aggiunto (μL) ρε pH					
+60 NaOH	5.35	10.7			
+70 KMnO ₄	8.41	10.5			
+50 KMnO ₄	9.24	10.4			

Tabella 5.7. Valori di pε e pH dopo aggiunta di NaOH 4N e KMnO₄ 0.01N all'acqua della sorgente Molini di Sant'Anna.

Per le acque della sorgente Molini di Sant'Anna, a 100 mL di acqua sono stati aggiunti 60 μ L di NaOH 4N fino ad un valore di pH = 10.7. Sono stati quindi aggiunti 70 μ L e poi ulteriori 50 μ L di KMnO₄ 0.01N fino alla precipitazione del corrispondente ossido (Tabella 5.7).

5.3.2. Esperimenti con NaOCl

Allo stesso campione di acqua del Torrente Baccatoio usato nell'esperimento precedente è stato aggiunto NaOCl fino ad indurre precipitazione di MnO₂(c).

Caso A: L'aggiunta di NaOCI (8% in cloro) è stata effettuata direttamente sul campione (Tabella 5.8).

Torrente Baccatoio						
pH = 2.7; Eh = 836; pε = 14.17						
Volume aggiunto (μL)	рН	Eh	pε			
+700 NaOCI	2.9	1368	23.19			
+500 NaOCl	3.1	1370	23.22			
+500 NaOCl	4.3	1245	21.10			
+500 NaOCl	6.7	1146	19.42			
+200 NaOCI	6.9	1135	19.24			
+200 NaOCI	7.1	1127	19.10			
+500 NaOCl	7.3	1114	18.88			

Tabella 5.8. Dati di pH, Eh e pε dopo le aggiunte dirette di NaOCl all'acqua del Torrente Baccatoio.

Caso B: L'aggiunta di NaOCI (8% in cloro) è stata preceduta da quella di NaOH 4N. Il pH è stato portato ad un valore di 11.7. Successivamente è stato aggiunto NaOCI con le modalità descritte in Tabella 5.9.

Torrente Baccatoio						
pH = 2.7; Eh = 83	36; pa	= 14.1	L7			
Volume aggiunto (μL) pH Eh pε						
+500 NaOH	11.7	200	3.4			
+ 50 NaOCl	9.7	821.6	13.9			
+ 50 NaOCl	9.6	868.6	14.7			
+ 50 NaOCl	9.6	880.5	14.9			
+ 500 NaOCl		deriva				

Tabella 5.9. Dati di pH, Eh e p ϵ dopo le aggiunte di NaOH e NaOCl all'acqua del Torrente Baccatoio.

5.3.3. Risultati

In Tabella 5.10 sono riassunti i risultati delle prove di abbattimento di Fe e Mn degli esperimenti precedentemente descritti sull'acqua del Torrente Baccatoio. I campioni B1 e B2 sono stati ricavati da una medesima soluzione ottenuta al termine del processo di ossidazione del campione di acqua del torrente con NaOCl in ambiente alcalino: B1 è l'aliquota successivamente filtrata e acidificata con HNO₃, e B2 è l'aliquota non trattata. Le differenze di composizione tra i due campioni dimostrano il ruolo dei processi cinetici e probabilmente degli scambi con l'ossigeno dell'aria. Gli abbattimenti maggiori di Mn si ottengono sia con KMnO₄ a pH alcalino che con NaOCl a pH circa neutro (7.3).

I processi di mescolamento hanno evidenziato la capacità tampone delle acque del torrente quando sono mescolate con acque ad alcalinità carbonatica. Si può supporre che tale fenomeno sia dovuto alla precipitazione di idrossidi di Fe(III) che sottraggono ossidrili all'acqua diminuendo così il pH. Non sono state effettuate determinazioni di ferro e manganese per i vari step di mescolamento.

Le prove, pur con i limiti sopra menzionati, hanno accertato la possibilità di abbattere il Mn fino a percentuali tra il 97% ed il 98%, senza aerazione forzata del sistema. L'abbattimento del ferro può superare il 99%.

		+NaOH μL	+KMnO ₄ μL	+NaOCl μL	рН	рε	Mn μg/L	Fe μg/L	rim. Mn %	rim. Fe %
В0	В				2.7	14.2	2059	172388		
В3	B+NaOH+KMnO ₄ (FA)	930	3050		11.9	10.1	29.5	3343	98.6	98.1
B5	B+NaOH+KMnO ₄ (FA)	340	2600		8.1	13.5	229	462	88.9	99.7
B4	B+NaOCI (FA)			3100	7.3	18.9	52	4934	97.5	97.1
B1	B+NaOH+NaOCl (FA)	500		650	In deriva	In deriva	213	1464	89.6	99.2
B2	B+NaOH+NaOCl	500		650	In deriva	In deriva	115	198	94.4	99.9

Tabella 5.10. Riassunto dei test effettuati sull'acqua del Torrente Baccatoio. Sigle: B = acqua del Torrente Baccatoio campionato in corrispondenza della stazione VTBDA (vedi Appendice A); FA = aliquota filtrata e acidificata con HNO₃; rim = efficienza di rimozione di Fe e Mn dalle acque del Torrente Baccatoio.

6. Valutazione del grado di contaminazione da EPT, in particolare tallio, del sistema suolo-pianta nel bacino del Torrente Baccatoio

6.1. Introduzione

Aree geograficamente interessate in un recente passato da coltivazioni minerarie risentono molto spesso degli impatti ambientali, anche a distanza di anni dalla cessazione delle attività estrattive, a causa dell'abbandono degli interventi di gestione e di controllo delle acque di superficie e profonde, e per il processo di alterazione e degradazione dei materiali di discarica.

E' il caso del comprensorio Pietrasanta-Valdicastello-Stazzema ed in particolare delle aree sottese al Torrente Baccatoio che riceve i drenaggi acidi provenienti dalle miniere abbandonate del Pollone e di M. Arsiccio e le cui acque si contaminano di EPT quali Ag, As, Cr, Cu, Hg, Fe, Mn, Pb, Sb, Tl, Zn, principalmente a causa dell'alterazione dei solfuri (soprattutto pirite).

Nell'anno 2015 il gruppo di lavoro del Centro Sperimentale per lo Studio e l'Analisi del Suolo (CSSAS) - Dipartimento di Scienze Agrarie (DipSA) dell'Università di Bologna, in collaborazione con il Dipartimento di Scienze della Terra dell'Università di Pisa, ha svolto campagne di rilevamento sia in zone orticole che in ambienti di discarica mineraria provvedendo alla raccolta di campioni di suoli e di vegetali coltivati e non. Dopo le relative preparazioni si è provveduto a valutare le concentrazioni di metalli pesanti nei suoli coltivati e il relativo assorbimento, accumulo e traslocazione dei metalli nei vegetali coltivati e non.

In questo rapporto vengono quindi riportate le procedure di monitoraggio e le metodologie di indagine riferite al controllo del sistema suolo-pianta ed i risultati relativi alla concentrazione di macro- e micro-elementi riscontrate in vegetali coltivati e naturali e nei rispettivi suoli a differenti livelli di profondità. Particolare attenzione viene dedicata alla eventuale presenza e concentrazione del TI in considerazione dell'elevata tossicità dell'elemento per l'uomo e della situazione locale, che lo pone come un elemento con concentrazioni non comuni piuttosto elevate. I valori di concentrazione rilevati nella presente indagine sono stati confrontati, ove disponibili, con i limiti di legge esistenti, distinti per matrice ambientale analizzata; in assenza di indicazioni normative sono stati presi a riferimento i valori disponibili in bibliografia. E' stato inoltre avviato lo studio relativo alla formazione ed evoluzione pedogenetica dei suoli presenti

nelle discariche dei materiali di origine mineraria per valutare una possibile naturalizzazione e messa in sicurezza di tali siti.

6.2. Riferimenti normativi relativi alla presenza di EPT nei suoli e nei vegetali

6.2.1. Riferimenti normativi e limiti di legge per la concentrazione di EPT nei suoli

Il DM 25 ottobre 1999 n. 471 ha posto limiti per alcuni elementi considerati inquinanti nel suolo a seconda della sua destinazione d'uso. A partire dal 29 aprile 2006, il DM 471/99 è stato abrogato con l'approvazione del vigente D.Lgs. 3 aprile 2006 n. 152 recante "Norme in materia di difesa del suolo e lotta alla desertificazione, di tutela delle acque dall'inquinamento e gestione delle risorse idriche". Nel D.Lgs. 03.04.2006, n. 152 (S.O. n. 96 alla Gazzetta Ufficiale 14 aprile 2006, n. 88) vengono indicati i valori di concentrazione limite accettabili nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare (Allegato 4/14 - Allegato 5 al Titolo V della Parte quarta) (Tabella 6.1).

Elemento	Α	В
	Siti ad uso verde pubblico, privato e residenziale	Siti ad uso commerciale e industriale
Antimonio	10	30
Arsenico	20	50
Berillio	2	10
Cadmio	2	15
Cobalto	20	250
Cromo totale	150	800
Cromo VI	2	15
Mercurio	1	5
Nichel	120	500
Piombo	100	1000
Rame	120	600
Selenio	3	15
Stagno	1	350
Tallio	1	10
Vanadio	90	250
Zinco	150	1500

Tabella 6.1. Concentrazioni soglia di contaminazione nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare (Allegato 4/14 D.lgs. 152/2006). Valori espressi in mg/kg di sostanza secca.

In Tabella 6.2 vengono riportati i tenori medi in microelementi e metalli pesanti nei suoli della Toscana rilevati dal Centro Tematico Nazionale Territorio e Suolo (APAT/CTN TES).

Confrontando tali dati con i limiti previsti dal D. Lgs. 152/2006 si evidenzia che mentre i valori medi non superano mai i limiti di legge, al contrario quelli massimi sono spesso superiori specialmente in provincia di Livorno.

Elemento		Arezzo	Firenze	Grosseto	Livorno	Pisa	Siena
	n, dati	27	97	50	31	18	16
	mediana	LR	0,09	LR	0,8	0,31	0,26
Cd	media	LR	0,1	0,2	1,2	0,31	0,5
	minimo	LR	LR	LR	LR	0,23	LR
	massimo	LR	0,3	3,0	4,3	0,43	4,2
	n, dati			23	27		
	mediana			52,0	83,2		
Cr	media			54,6	120,0		
	minimo			8,8	61,5		
	massimo			159,0	434,0		
	n, dati	27	102	25	30	18	16
	mediana	50,0	50,0	23,0	31,7	34,0	57,7
Cu	media	52,9	51,0	24,1	37,8	34,7	56,4
	minimo	40,0	17,2	LR	3,7	20,0	18,7
	massimo	85,0	88,0	88,3	118,0	55,0	94,3
	n, dati	21	102	47	31	18	17
	mediana	74,0	59,7	42,0	72,5	64,5	50,0
Ni	media	70,3	119,0	40,7	113,0	64,9	55,0
	minimo	51,0	29,3	5,0	23,5	51,0	31,8
	massimo	74,0	1827,0	80,0	665,0	85,0	127,0
	n, dati	27	100	44	31	18	18
	mediana	22,0	14,3	25,0	41,6	15,5	33,1
Pb	media	22,3	18,3	31,8	60,7	18,2	32,7
	minimo	20,0	0,1	1,5	10,3	10,0	LR
	massimo	25,0	96,4	95,0	266,0	69,7	680,0
	n, dati	21	102	35	30	18	21
	mediana	77,0	87,5	48,0	85,5	92,5	105,0
Zn	media	75,6	86,9	50,2	100,0	94,2	139,0
	minimo	61,0	50,0	26,0	42,0	54,0	28,0
	massimo	86,0	160,0	85,0	335,0	164,0	277,0

Tabella 6.2. Contenuto in Cd, Cr, Cu, Ni, Pb e Zn totali, estraibili in Aqua Regia, nei suoli agrari della Toscana. Valori espressi in mg/kg di sostanza secca. Sigle: LR = Inferiore al limite di rilevabilità strumentale. Fonte: APAT/CTN TES Centro Tematico Nazionale Territorio e Suolo su dati ARPA/APPA, Università e Province (2003).

Nella Tabella 6.2 non vengono riportati i risultati riferiti alla provincia Lucca, e non viene preso in considerazione il contenuto in tallio.

6.2.2. Riferimenti normativi e limiti di legge per la concentrazione di EPT nei vegetali

L'assorbimento di EPT da parte delle piante differisce in funzione delle specie e delle cultivar all'interno della specie; inoltre, l'accumulazione varia nei diversi organi di ciascuna pianta. Generalmente i microelementi contenuti negli organi eduli delle piante (foglie, frutti, granella) sono presenti in concentrazioni minori rispetto alle parti non commestibili. In Tabella 6.3 sono riportate, a scopo esemplificativo, le concentrazioni medie dei metalli pesanti presenti in alcune specie vegetali.

Pianta	Organo	Concentrazione (mg/kg di sostanza secca)					
		Cd	Cu	Cr	Ni	Pb	Zn
Davianalla	cima	0,87	8,40	3,30	4,24	3,74	55
Ravanello	radice	0,66	4,70	1,34	1,72	0,62	43
Carota	cima	0,73	10,20	0,62	1,20	1,08	36
Carota	radice	0,32	6,50	0,40	1,10	0,60	232
Maia	granella	0,16	3,10	0,52	0,34	< 0,10	26
Mais	foglie	0,50	8,30	1,02	1,42	5,38	32

Tabella 6.3. Assorbimento di Cd, Cu, Cr, Ni, Pb, Zn da parte di alcuni vegetali.

Il trasferimento suolo-pianta e la biodisponibilità di alcuni elementi particolarmente mobili, come ad esempio As, Cd, Cr, Pb e Tl, dipendono in gran parte dalle caratteristiche chimico-fisiche e biologiche dei suoli e dai processi organici che intervengono nella rizosfera, mentre il contenuto può variare tra le specie vegetali.

La valutazione del rischio di tossicità dovuto all'ingestione di prodotti vegetali che hanno adsorbito aliquote significative di EPT di tipo inorganico trova scarso riscontro nella legislazione comunitaria e del nostro Paese. Il Regolamento CEE n. 1881/2006 del 19/12/2006 e successive modifiche fornisce indicazioni circa i tenori massimi solamente di quattro contaminanti inorganici As (Reg. UE n.1006/2015), Cd (Reg. UE n. 488/2014), Pb (Reg. UE n. 1005/2015) e Sn (Reg. UE n. 420/2011) che possono essere presenti nei vegetali utilizzati a scopo alimentare.

L'obiettivo è quello di ridurre la presenza di tali contaminanti nei prodotti alimentari ai livelli minimi mediante buone procedure di fabbricazione o agricole, ed ottenere di conseguenza un livello elevato di protezione della salute pubblica, con particolare riguardo ai settori sensibili

della popolazione: bambini, persone allergiche. In Tabella 6.4 sono elencati i valori di concentrazione massima di As, Cd, Pb e Sn stabiliti dal regolamento UE n. 1881/2006 e successive modifiche, oltre i quali i prodotti vegetali di tipo alimentare che presentano tali concentrazioni non possono essere immessi sul mercato o di cui è sconsigliato l'uso alimentare. Tranne i quattro elementi sopra citati, non sono presenti nell'ordinamento europeo, né in quello italiano, indicazioni circa i limiti delle concentrazioni di altri microelementi presenti nei prodotti alimentari di origine vegetale.

Prodotti vegetali di utilizzo alimentare		ri massin g/kg di pe	-	
	As	Cd	Pb	Sn
Cereali, legumi, leguminose	0,20	0,10	0,20	
Crusca, germe grano, riso, semi di soia		0,20	0,20	
Frutta		0,05	0,10	
Ortaggi a radice, erbe aromatiche, funghi, pinoli, patate non sbucciate		0,05	0,10	
Ortaggi a stelo e patate sbucciate		0,10	0,10	
Ortaggi a foglia , cavoli a foglia, sedano rapa, salsefrica, funghi coltivati		0,20	0,30	
Mirtilli rossi, ribes a grappoli, bacche di sambuco e frutti del corbezzolo		0,10	0,20	
Alimenti in scatola per lattanti e alimenti a base di cereali per lattanti e bambini				50

Tabella 6.4. Tenori massimi di contaminanti inorganici (As, Cd, Pb, Sn) consentiti nei prodotti vegetali ad uso alimentare. Regolamento UE n.1881/2006 del 19.12.2006 e successive modifiche.

6.3. Il tallio nei suoli e nei vegetali

Il TI, nei suoi due stati di ossidazione TI(III) e TI(I), è classificato come uno dei 13 elementi inquinanti prioritari e la sua tossicità per tutti gli organismi è simile a quella di Hg(II) ma molto più tossico del Cd(II), Cu(II) e Ni(II). La concentrazione media di TI nel suolo è inferiore a 1 mg/kg ed esso è di solito di origine pedogeochimica. Il TI è considerato tra le specie chimiche più tossiche per gli esseri umani a causa della possibilità di sostituire K⁺ nei processi metabolici; il TI ha anche

una forte attrazione per i gruppi sulfidrici, inibendo così e inattivando la componente enzimatica. La dose media letale di tallio per gli umani varia da 10 a 15 mg/kg di peso corporeo.

L'esposizione umana al TI avviene per via orale, via cutanea o per inalazione. Il TI viene rilasciato in atmosfera da attività industriali come le centrali a carbone, fonderie, cementifici e quindi dopo il rilascio può disperdersi in atmosfera. La contaminazione di acque superficiali e suoli è per lo più connessa ad attività minerarie.

Alte concentrazioni di TI (> 50 mg/kg) nel suolo sono state segnalate in alcune parti della Terra in prossimità di miniere o aree vulcaniche: per esempio, in Slesia-Craeowian, nella provincia di Guizhou, Cina. In Italia, alte concentrazioni vengono segnalate nelle Alpi Giulie, in alcune formazioni vulcaniche dell'Isola di Ischia e nelle Alpi Apuane, in cui ricade il territorio della presente indagine. Il TI presente nel suolo può essere assimilato da parte delle coltivazioni tanto che in zone contaminate il consumo alimentare di frutta e verdura costituisce un rischio per la salute umana a causa della elevata tossicità dell'elemento. Il trasferimento suolo-pianta e la biodisponibilità del TI dipendono in gran parte dalle caratteristiche chimico-fisiche e biologiche dei suoli e dai processi organici che intervengono nella rizosfera, mentre il contenuto può variare tra le specie vegetali. In molti casi le concentrazioni di TI nelle piante possono superare la concentrazione nel suolo e il contenuto in parti commestibili di piante possono differire in modo sostanziale. Studi sperimentali circa il trasferimento dal suolo alla pianta risultano molto limitati. Il cavolo verde (Brassica oleracea L. o varianti) è stato identificato come una pianta iperconcentratrice di Tl. Da alcuni anni presso il Dipartimento di Scienze Agrarie dell'Università di Bologna sono in corso indagini circa il comportamento nel tempo di alcune piante orticole (basilico, menta, fragola, pomodoro) e arboree (roverella) coltivate in un terreno naturale contaminato con Tl, con lo scopo di determinare le concentrazioni di Tl nelle singole parti della pianta (radici, fusto e foglie), quantificare la capacità di trasferimento del TI all'interfaccia suolopianta alla variazione del pH, e valutare il comportamento di crescita delle piante interessate dalla contaminazione.

6.4. Protocollo sperimentale del monitoraggio

6.4.1. Localizzazione dei siti d'indagine e modalità di campionamento

Per la valutazione del grado di contaminazione del sistema acqua-suolo-pianta è stato effettuato un monitoraggio seguendo le procedure di seguito descritte:

- a) individuazione di transetti trasversali alla valle del Torrente Baccatoio;
- b) definizione per ogni transetto di siti di controllo ciascuno caratterizzato da un differente grado
- di sensibilità in funzione del tipo di uso del suolo (naturale, coltivato irriguo, coltivato non irriguo);
- c) prelievo per ogni sito di campioni di suolo in superficie (Top soil = 0-10 cm), a media

profondità (10-30 cm), in profondità (Sub soil = 80-100 cm) e di interfaccia con gli apparati radicali

(Rizosfera) per un totale di 200 campioni;

d) prelievo per ogni sito di prodotti agricoli da coltivazioni irrigue o non irrigue, di briofite come bio-indicatori naturali, e di vegetazione naturale, per un totale di 150 campioni.

I siti di campionamento sono stati localizzati mediante georeferenziazione nel sistema UTM WGS84 sia su base cartografica 3D che su base satellitare.

6.4.2. Metodologie analitiche

I campioni di suolo e dei vegetali sono stati essiccati in stufa ventilata ad una temperatura costante di 50 °C e successivamente macinati finemente mediante mulino a palle. Circa 250 mg di suolo finemente macinato sono stati fatti reagire in Aqua Regia (AR) (1:3, v/v; HNO₃:HCl sovrapuri, E. Merck, Germany), mentre 250 mg di polvere vegetale sono stati attaccati con una soluzione 1:3, v/v; H₂O₂:HNO₃ sovrapuri (E. Merck, Germany). In ambedue i casi si è proceduto alla mineralizzazione mediante forno a microonde (Start D 1200, Milestone, USA). Il mineralizzato è stato portato ad un volume di 20 mL previo filtraggio con filtro Wathmann n. 42. La concentrazione degli elementi presenti nella soluzione è stata determinata mediante ICP-OES (*Inductively Coupled Plasma Emission Spectrometry*; Ametek, Germania). La calibrazione dell'ICP-OES è stata effettuata mediante standard internazionali (BCR-990 e BCR-320R) e nazionali (AMS-ML1 e AMS- MO1).

6.5. Risultati del monitoraggio di siti agricoli a prevalente coltivazione orticola

Le tabelle di seguito riportate si riferiscono a 20 siti indagati nelle diverse fasi del monitoraggio condotto da gennaio a settembre 2015. Le schede riportanti la sigla iniziale VCA si riferiscono a

siti agricoli a prevalente coltivazione orticola. Ogni scheda riporta le coordinate geografiche del punto baricentrico del sito in esame nel sistema UTM WGS84 (Figura 6.1).

Ogni scheda riporta le concentrazioni di EPT espressi in mg/kg determinate nei campioni dei suoli e dei vegetali campionati.

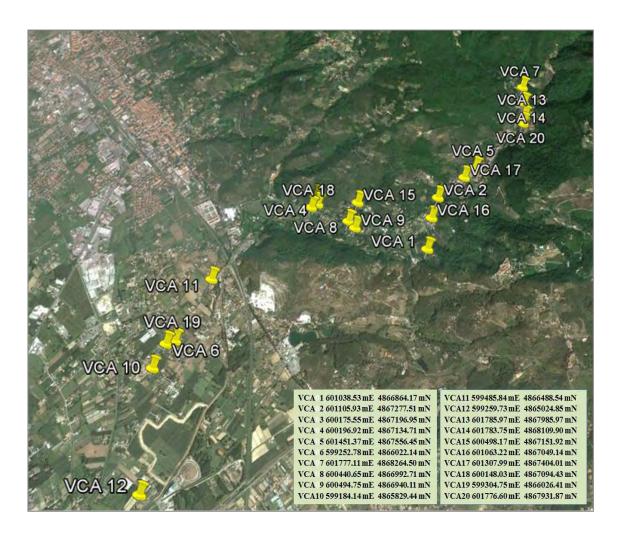


Figura 6.1. Localizzazione dei siti di campionamento.

VC	CA 1						4866864	1.17 mN	601038	3.53 mE	- 89 m sl	m
/C/	A 1 – Macroelement	i (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	769	15506	893	7493	2511	44,0	905	5431	9917	9,7
	Cavolo nero	fusti	213	11401	244	4751	2478	13,6	2154	5249	4204	5,1
_		radici	245	4023	216	5275	1032	7,5	903	5213	2714	4,3
Vegetali	Cavolo nero	foglie	38	12636	114	7984	2419	28,6	1016	4155	8837	2,7
ŝ	cartoccio	fusti	68	5288	94	6159	1452	7,2	1836	3256	2479	2,6
Š		radici	6182	4379	5773	8152	1770	72,4	986	4123	3882	42,2
		foglie	698	15271	718	287	2275	29,1	3187	4893	3249	9,4
	Finocchio	fusti	324	8775	411	4569	1984	19,3	3960	9249	3209	11,3
		radici	522 57.9	7288 1743	478 86	2763 4737	2133 1244	25,7 7,5	2377 672	5061 3588	1370 1117	8,5 3,1
		frutti	784	43434	695	5752	3489	46,8	1147	3085	6424	9,0
	Pomodoro	foglie fusti	180	12317	159	6689	1816	14,1	1153	3924	1398	4,5
		radici	2152	23750	1532	7297	1656	55,4	859	2266	1359	26
		Cavolo nero	33436	7876	23398	8340	5444	359	873	3097	988	42
		Cavolo n. cart.	23994	2469	22291	5031	3777	270	382	1199	341	31
_	Interfaccia radici	Pomodoro	27633	4568	20823	6271	3888	390	564	1987	408	38
Suolo		Pomodoro	24940	4186	20334	5171	3646	390	449	1970	396	35
S		0-10 cm	28042	7393	25415	6443	4256	351	550	3098	842	34
	Profilo	10-30 cm	33113	8181	27347	8025	4690	363	744	3085	795	43
		80-100 cm	36665	1042	25010	7032	5326	988	593	723	97.3	6.
/C/	1 - Microelementi		Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	<0.01	0,40	31,6	13,1	<0,02	44,0	<0,06	4.92	8,74	0,0
	Cavolo nero	fusto	<0,01	0,29	22,5	23,4	<0.02	13,6	<0,06	3,06	4,54	<0,0
		radici	<0.01	0,25	14,2	13,5	<0,02	7,5	0,08	5,16	8,35	<0,
=		foglie	<0,01	0,26	22,3	17,8	<0,02	28,6	<0,06	0,81	4,60	0,0
Vegetali	Cavolo nero	fusto	<0,01	0,12	15,2	24,2	<0,02	7,2	<0,06	2,14	3,17	0,0
2	cartoccio	radici	<0,01	2,72	14,8	71,8	0,08	72,4	1,70	30,3	30,51	0,
		foglie	<0,01	0,52	31,9	89,9	<0,02	29,1	<0,06	2,70	12,86	<0,
	Finocchio	fusto	<0,01	0,41	25,9	16,0	<0,02	19,3	<0,06	7,47	26,48	<0,
		radici	<0,01	0,29	24,6	11,7	<0,02	25,7	<0,06	5,99	62,97	<0,
		frutti	<0,01	<0,04	7,60	2,51	<0,04	<0,01	<0,02	1,71	11,6	<0,0
	Pomodoro	foglie	<0,01	<0,04	40,1	41,3	<0,04	0,01	<0,02	1,53	113	<0,
	romodoro	fusti	<0,01	<0,04	12,8	12,4	<0,04	<0,01	<0,02	1,50	20,2	<0,
		radici	<0,01	<0,04	13,9	35,0	<0,04	0,05	0,14	7,18	32,6	<0,
		Cavolo nero	<0,05	10,4	12,4	267	1,16	359	10,9	64,2	115,1	<0,1
	Interfaccia radici	Cavolo n. cart.	<0,05	10,6	5,7	155	0,77	270	8,1	53,5	66,6	<0,1
0	Internaceia radici	Pomodoro	<0,05	10,77	9,3	234	0,95	0,36	8,79	49,6	141	<0,0
Suolo		Pomodoro	<0,05	11,04	8,1	207	0,79	0,33	8,58	47,7	140	<0,0
S		0-10 cm	<0,05	12,3	10,4	219	1,00	351	10,3	60,7	83,4	<0,.
	Profilo	10-30 cm	<0,05	10,8	11,8	259	1,17	363	10,1	57,7	81,8	<0,1
		80-100 cm	<0,05	11,4	9,3	189	1,16	988	13,1	54,1	26,2	<0,1
CE	l - Microelementi		Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		foglie	3,26	3,78	1,44	3,46	0,91	0,18	30,8	0,10	0,84	64
	Cavolo nero	fusto	2,17	1,38	0,47	1,88	0,75	0,22	35,2	0,17	<0,08	44
-		radici	1,68	2,00	0,36	2,08	<0,08	0,20	17,9	0,17	0,26	30
Vegetali	Cavolo nero	foglie fusto	1,78 1,86	0,91 <0,01	0,15 0,06	1,50 1,41	0,79 0,86	0,28 0,25	26,1 22,1	0,14 0,16	<0,08 <0,08	45 39
80	cartoccio	radici	13,12	2,34	6,06	17,31	1,24	0,25	23,1	0,10	8,15	55
_		foglie	3,36	3,95	0,79	2,83	0,72	0,26	18,5	0,14	0,74	60
	Finocchio	fusto	2,41	0,67	1,38	2,84	0,72	0,34	23,9	0,13	0,74	98
	гшоссшо	radici	2,79	0,37	1,13	3,65	0,79	0,34	31,5	0,16	0,44	1
		frutti	0,42	<0,03	1,50	1,01	0,73	1,31	3,2	<0.09	<0,08	22
		foglie	2,50	0,31	0,27	2,48	0,68	<0,05	84,7	<0,09	0,54	2]
	Pomodoro	fusti	0,71	0,69	<0,01	2,33	0,58	<0,05	28,7	<0,09	<0,08	39
		radici	5,30	1,59	1,22	7,76	0,62	<0,05	67,6	<0.09	2,73	62
		Cavolo nero	46,9	2,71	25,6	59,3	2,73	2,19	41,2	<0,40	41,5	2
		Cavolo n. cart.	34,1	2,71	20,3	52,1	2,73	1,52	14,5	<0,40	29,6	93
	Interfaccia radici	Pomodoro	42,8	1,66	22,2	62,3	2,45	2,34	27,4	<0,40	36,7	1
2		Pomodoro	40,1	1,75	22,2	66,1	2,54	2,54	24,1	<0,40	33,2	1
Suolo	1						2,54	2,05	38,2	<0,40	35,2	2:
Suc		0-10 cm	30 7	3 / 3	// 10 7							
Suc	Profilo	0-10 cm 10-30 cm	39,2 45,1	3,23 2,91	26,5 24,5	56,6 56,5	2,62	3,64	41,4	<0,40	41,4	25

Tabella 6.5. Concentrazioni di EPT ed altri elementi in suoli e vegetali campionati in siti agricoli.

VC	CA 2						48672	77.51 ml	N _ 6011	05.93 m	E – 80 n	n slm
VCA	A 2 – Macroelementi	(mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	17	11797	94	8393	1813	58,0	1805	4181	7340	2,62
	Cavolo nero	fusti	58	7293	95	8078	1957	21,0	7192	4085	1856	2,97
		radici	342	6176	403	8229	1818	20,0	5110	4389	3683	4,45
		foglie	86	19693	121	5939	1024	19,7	3757	2300	5672	2,62
	Rapa ciocca	fusti	532	5032	895	5623	1001	43,7	1276	3295	5122	4,99
		radici	542	5897	883	8301	1096	40,9	1511	3250	5153	5,52
=	_	foglie	456	456	12019	652	7361	1925	73,6	1265	5035	6803
Vegetali	Rapa	fusti	297	15367	557	3818	1537	32,0	1889	4249	5598	5,05
Š		radici	1951	6148	2493	5782	1805	74,9	2389	5813	4965	17,67
	Cinalla	foglie	91	9243 6307	173 243	7845 8078	1608	31,9	2074 3107	4497	6913 11107	3,46
	Cipolla	fusto radici	144 201	6064	294	6881	903	18,9 20,2	2490	5243 5208	6976	4,63 4,23
		frutti	24,8	1532	50	7014	1122	7,7	964	3349	1082	2,73
		foglie	126	47570	173	7450	4390	82,5	1618	2669	16016	3,65
	Pomodoro	fusti	183	15635	200	7540	2087	17,9	2183	2484	1238	4,41
		radici	1418	14590	1233	7516	2129	53,5	2311	1861	1349	19,48
		Cavolo nero	24451	3636	23746	6614	4639	661	494	1230	598	463
	Interfaccia radici	Rapa	24217	3954	26460	6561	4712	664	484	1346	598	448
0		Pomodoro	14557	4684	19937	3188	3307	610	311	1313	669	312
Suolo		0-10 cm	18497	3896	22275	4896	3841	542	339	1220	462	367
92	Profilo	10-30 cm	25409	4380	23694	7132	4606	636	515	1348	509	486
	11020	80-100 cm	19828	2351	26803	5274	4130	831	326	521	659	349
VCA	A 2- Microelementi		Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	-Ag <0.01	0,26	15,0	31,5	<0.04	0,18	<0.06	1,29	4,27	0,08
	Cavolo nero	fusti	<0,01	0,16	15,5	77,4	<0,04	0,13	<0,06	1,69	4,12	0,03
	Carolo nelo	radici	<0.01	1,65	18,0	136,2	<0,04	0,22	0,18	4,40	24,69	0,07
		foglie	<0.01	0,42	20,7	214,7	<0,04	0,31	<0,06	1,04	3,60	0,06
	Rapa ciocca	fusti	<0,01	1,88	15,7	79,3	<0,04	0,32	0,38	8,72	19,1	0,06
	Turpa crocca	radici	<0,01	1,73	17,2	84,8	<0,04	0,35	0,28	8,38	19.9	0,07
		foglie	<0,01	1,27	26,6	62,5	<0,04	0,52	<0,06	4,54	15.4	0,08
Vegetali	Rapa	fusti	<0,01	0,79	26,3	104,9	<0,04	0,54	0,37	4,43	9,02	0,07
86		radici	0,26	4,71	23,7	179,5	<0,04	0,55	0,89	26,69	32,3	0,07
×		foglie	<0.01	0,40	29,1	32,0	<0,04	0,46	<0,06	3,55	10,0	0.08
	Cipolla	fusto	<0,01	0,52	51,0	53,0	<0,04	0,49	<0.06	3,19	20,7	0,08
		radici	<0,01	0,91	31,4	68,0	<0,04	0,55	<0,06	3,64	22,9	0,09
		frutti	<0.01	<0.04	10,7	10,3	<0,04	<0.01	<0.06	0,36	13.0	<0,04
	D	foglie	0,25	<0,04	68,0	301	<0,04	1,13	<0,06	<0,02	599	<0,04
	Pomodoro	fusti	0,13	<0,04	10,6	116	<0,04	0,15	<0,06	2,00	52,6	<0,04
		radici	0,67	1,50	8,8	198	<0,04	0,34	0,43	6,32	50,3	<0,04
		Cavolo nero	1,73	47,7	16,9	1411	1,10	1,33	12,7	61,1	172	<0,10
	Interfaccia radici	Rapa	1,83	58,7	16,9	1431	1,08	1,47	13,0	65,2	187	<0,10
용		Pomodoro	1,61	42,2	10,1	1299	0,71	1,34	11,79	33,2	204	0,15
Suolo		0-10 cm	1,46	44,7	12,8	1110	0,87	1,26	11,2	61,7	127	<0,10
	Profilo	10-30 cm	2,07	45,0	17,8	1333	1,09	1,33	13,1	63,4	148	<0,10
		80-100 cm	3,06	111	11,7	2265	0,86	2,66	13,0	43,1	53,4	0,47
VCA	A 2- Microelementi (mg kg ^{-l})	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		foglie	1,78	1,15	0,03	1,81	0,82	0,15	26,7	0,13	<0,08	37,8
	Cavolo nero	fusti	1,87	<0,03	0,11	3,92	0,96	0,29	37,7	0,13	<0,08	47,8
	L	radici	2,79	1,63	0,66	17,2	1,19	0,28	42,9	0,16	0,49	82,1
		foglie	2,02	3,73	<0,01	2,67	0,91	0,21	66,7	0,15	<0,08	23,8
	Rapa ciocca	fusti	3,15	2,01	1,17	22,0	1,01	0,17	24,6	0,12	0,82	49,3
	<u> </u>	radici	3,46	2,07	1,44	20,4	1,40	0,16	28,7	0,13	0,73	107,4
=		foglie	3,28	8,01	0,67	14,4	1,30	0,25	39,2	0,17	0,48	68,3
Vegetali	Rapa	fusti	2,88	3,91	0,43	10,4	1,22	0,26	61,5	0,14	0,31	56,4
80		radici	9,11	6,89	3,09	59,4	2,19	0,20	45,4	0,12	3,46	85,4
>		foglie	1,96	0,82	0,32	4,30	0,98	0,29	21,9	0,18	<0,08	47,4
	Cipolla	fusti	2,19	0,23	0,56	6,03	1,13	0,29	29,9	0,17	<0,08	79,8
		radici	2,29	0,54	1,20	9,11	0,91	0,25	33,3	0,18	<0,08	158
		frutti	0,31	<0,03	<0,01	1,18	0,62	<0,05	4,0	<0,09	<0,08	20,4
		foglie	0,98	<0,03	<0,01	3,17	0,62	0,46	134	<0,09	<0,08	19,4
	Pomodoro		1,02	0,06	<0,01	10,1	0,69	<0,05	57,2	0,13	<0,08	65,1
	Pomodoro	fusti				20.3	3.60	<0,05	62,5	0.03	2.00	109
	Pomodoro	radici	6,25	0,95	2,61	38,2	1,26			0,82	2,00	
		radici Cavolo nero	6,25 58,2	0,95 2,05	27,4	534	22,5	2,48	39,9	<0,12	38,7	283
lo o	Pomodoro Interfaccia radici	radici Cavolo nero Rapa	6,25 58,2 59,8	0,95 2,05 2,32	27,4 28,7	534 549	22,5 24,2	2,48 2,03	39,9 40,9	<0,12 <0,12	38,7 38,5	283 306
olou		radici Cavolo nero Rapa Pomodoro	6,25 58,2 59,8 41,1	0,95 2,05 2,32 1,74	27,4 28,7 24,7	534 549 454	22,5 24,2 18,9	2,48 2,03 1,65	39,9 40,9 39,5	<0,12 <0,12 <0,12	38,7 38,5 26,7	283 306 259
Suolo		radici Cavolo nero Rapa	6,25 58,2 59,8	0,95 2,05 2,32	27,4 28,7	534 549	22,5 24,2	2,48 2,03	39,9 40,9	<0,12 <0,12	38,7 38,5	283

Tabella 6.5. Segue.

	CA 3					4	867196,9	05 mN_6	0017555	mE – 4	5 m slm	
VCA	3 – Macroelementi	(mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	36	11444	95	8051	1902	20,8	1263	4743	9471	3,16
	Cavolo nero	fusto	22	3521	42	7988	1900	4,5	1163	3497	2288	2,34
		radici	2649	6026	3104	8252	2694	30,5	608	4188	5893	17,8
Vegetali		foglie	255	18076	384	6574	2055	43,7	896	4859	7354	5,32
5	Rapa	fusto	50	17296	93	524	1597	12,5	1917	3670	5937	2,56
20	_	radici	3705	6866	5171	2665	1924	54,9	1837	5187	6661	30,5
		foglie	89	18246	153	6335	2148	20,9	3215	3641	4668	3,11
	Finocchio	fusto	144	147	10749	199	1010	1946	11,5	4041	6473	2048
		radici	3107	4417	4445	8239	1977	49,3	1342	3342	552	31,7
		Rapa	33905	5721	35152	8496	5947	406	455	1878	564,3	436
	Interfaccia radici	Cavolo nero	36578	11303	34851	9184	6923	420	521	1860	687,6	490
Suolo		Finocchio	45114	6350	38470	12051	7802	416	739	1808	632	578
S		(0-10 cm)	44173	8425	35827	12126	8031	411	710	1764	725	577
	Profilo	(10-30 cm)	36760	7259	36137	9268	6854	408	474	1667	2126	473
		(80-100 cm)	45850	1731	47194	10277	6482	347	517	814	128	565
VCA	3 – Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	<0,01	0,23	20,0	14,5	<0,02	0,10	<0,06	0,65	3,63	0,09
	Cavolo nero	fusto	<0,01	0,07	10,5	46,3	<0,02	0,09	<0,06	0,57	2,92	0,07
		radici	<0,01	2,42	19,4	46,9	0,05	0,08	1,15	5,68	17,75	0,07
Vegetali		foglie	<0,01	0,56	23,6	36,4	<0,02	0,16	<0,06	1,80	6,63	0,08
e e	Rapa	fusto	<0,01	0,14	24,9	55,8	<0,02	0,17	⊲0,06	1,61	3,34	0,07
×		radici	<0,01	3,85	23,4	81,4	0,11	0,11	2,07	18,37	23,26	0,06
		foglie	<0,01	0,41	29,1	30,6	<0,02	0,09	<0,06	0,83	9,08	0,06
	Finocchio	fusto	<0,01	0,30	30,5	69,7	<0,02	0,11	<0,06	4,68	11,85	0,07
		radici	<0,01	3,04	22,0	60,0	0,08	0,10	1,58	12,95	20,64	<0,10
		Rapa	<0,05	26,0	21,8	292	1,87	0,31	18,2	66,6	95,1	<0,10
	Interfaccia radici	Cavolo nero	<0,05	25,3	25,0	254	1,88	0,31	17,8	89,5	96,5	<0,10
્ર		Finocchio	<0,05	27,2	33,8	306	2,32	0,31	20,2	91,2	102,7	<0,10
Suolo		(0-10 cm)	<0,05	26,1	33,3	420	2,28	0,31	19,1	87,4	99,2	<0,10
•	Profilo	(10-30 cm)	<0,05	26,8	23,2	2500	1,95	0,31	19,4	73,0	98,9	<0,10
		(80-100 cm)	<0,05	33,8	26,3	164	2,53	0,16	25,1	60,8	36,7	<0,10
VCA	3 - Microelementi	(mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		foglie	1.87	1.47	0.01	1,58	0,78	0,24	26,2	0.13	0.02	23,7
	Cavolo nero	fusto	1,78	0,12	0.01	1,30	0,75	0.24	15,2	0.15	0.02	12.4
		radici	12,69	5,66	3,45	5,18	1.14	0.20	31,1	0.18	5,25	37.8
=		foglie	2,81	13,36	0,24	1,85	0,77	0.33	30,6	0,17	0,13	34,8
e e	Rapa	fusto	1.96	5,70	0,01	1.34	0,70	0,19	39,8	0,14	0,02	20,6
Vegetali		radici	22,39	12,06	5,80	10,6	1,62	0.24	30,8	0,16	8,28	52,7
		foglie	2,05	2,16	0,30	1,56	0,69	0,41	23,4	0,16	0,02	41,9
	Finocchio	fusto	2,35	0,13	0,57	2,34	0,77	0,33	32,6	0,17	0,05	36,6
		radici	15,77	1,71	5,37	8,08	1,46	0,27	21,7	0,14	6,32	26,0
		Rapa	97,4	5,8	41,2	64,3	5,5	3,37	24,9	<0,40	59,6	124
	Interfaccia radici	Cavolo nero	98,9	6,1	45,6	47,1	4,9	2,61	38,8	<0,40	62,7	116
2		Finocchio	105,8	6,1	47,5	57,6	6,7	6,09	32,4	<0,40	76,4	116
Suolo		(0-10 cm)	107,1	5,4	45.9	58,0	5,4	8,43	39,1	<0,40	73,3	117
0,1	Profilo	(10-30 cm)	98,9	5,8	46,3	50,7	5,4	2,38	32,8	<0,40	62,9	117
		(80-100 cm)	108,3	8,1	53,4	36,4	5.3	2,03	16,0	<0,40	79.8	73,4

Tabella 6.5. Segue.

VC	CA 4						48671	34.71 m	N _ 6001	96.92 ml	E – 36 m	slm
VC	A 4- Macroelementi	(mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		frutto	20,4	942	59,4	8317	1506	9,91	191	2856	2126	1,60
	Peperoncino	foglie	130	9190	162	6745	1830	12,2	614	2492	2726	3,05
Vegetali		fusto	32.3	7752	57,3	7603	1985	6,30	463	2589	1914	1,89
Set		frutti	15,1	1491	55,4	6578	1138	6,73	528	2355	926	1,84
Ve	D1	foglie	133	44165	157	7269	4063	37,3	888	2122	5187	4,09
	Pomodoro	fusti	50,9	14535	68,1	6569	2280	12,2	1557	2971	1025	2,69
		radici	454	20119	458	7245	1598	32,4	1304	1845	1360	7,93
	Interfaccia radici	pomodoro	19849	24057	16753	6653	7328	473	622	2739	762	538
Suolo		0-10 cm	16044	24381	16359	4892	7943	406	471	3075	2312	422
S	Profilo	10-30	18267	24461	18659	5433	8859	441	448	3144	736	447
**		80-100	11663	8141	16360	4243	2497	359	275	651	260	296
VC	4 4 Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		frutto	<0.01	0,42	29,5	18,2	< 0.02	0,15	<0.06	2,12	4,33	0,08
or o	Peperoncino	foglie	<0,01	0,14	10,9	14,8	<0.02	0.12	<0.06	0,90	7,03	0,06
		fusto	<0.01	0.28	7.8	8,6	< 0.02	0,15	<0.06	1,68	5.01	0,08
		frutti	<0.01	<0,04	6,5	2,33	<0.04	<0,01	< 0.06	1,39	6,72	<0,04
	A	foglie	<0.01	<0.04	44,4	47.0	<0.04	<0.01	< 0.06	<0.02	21.9	<0.04
	Pomodoro	fusti	<0.01	<0.04	9,8	15,3	<0.04	<0.01	<0.06	0.45	14.5	<0.04
		radici	<0.01	0,16	10,0	34,2	<0.04	<0.01	<0.06	2,89	24,1	<0.04
	Interfaccia radici	pomodoro	<0.05	21,3	18,5	1116	0.79	0,54	10,16	74.1	79,0	<0,01
Suolo	LESS WARREN	0-10 cm	0,13	19,7	15,5	2525	0,71	0,39	10,5	136,1	58,7	<0,10
Š	Profilo	10-30	<0,05	25,2	15,2	1035	0,78	0,47	10,7	141,1	68,4	<0,10
**	1721	80-100	<0,05	34,3	6,9	806	0,55	0,39	10,5	44,4	29,2	<0,10
VC	4- Microelementi	(mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
		frutto	4,72	5,04	0,01	1,91	0,93	0,30	13,2	0,17	0,03	17,8
	Peperoncino	foglie	1,80	2,09	0,14	2,73	0,86	0,43	1,7	0,14	0,06	15,0
Vegetali		fusto	2,27	1,51	0,01	1,58	0,74	0,24	18,8	0,22	0,03	22,2
et		frutti	0,31	0,03	<0.01	1,04	0,69	2,06	3,0	<0.09	<0.08	17,0
Ve	Pomodoro	foglie	0.91	0,43	0,09	1,46	0,61	<0,05	88,3	<0,09	<0,08	12,5
	Pomodoro	fusti	0,52	0,25	<0,01	2,02	0,59	<0,05	40,0	<0,09	<0,08	35,8
		radici	2,28	0,83	0,59	4,30	0,68	<0,05	65,0	<0,09	0,35	47,2
	Interfaccia radici	pomodoro	47,2	1,35	43,3	75	6,27	2,29	81,8	<0,40	32,6	181
olo		0-10 cm	37,4	2,60	49,0	64,5	6,5	1,72	150,2	<0,40	26,8	171
Suolo	Profilo	10-30	43,9	3,11	61,6	82,3	6,8	1,96	75,2	<0,40	29,9	174
	100	80-100	22,1	1,52	17,0	52,7	6,8	0,85	25,6	<0,40	18,9	74,3

Tabella 6.5. Segue.

	CA 5						50.45 m	N_ 6014				
VC.	A 5- Macroelement	i (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
	The second	foglie	218	17953	276	7591	2205	64,0	906	4520	8740	5,22
	Cavolo nero	fusto	144	10066	168	4142	2122	19,1	2292	3616	3182	3,79
		radici	1912	9764	1866	8268	1512	69,3	929	4283	5701	18,1
		foglie	77	12128	136	7681	1514	32,8	975	4185	6270	3,36
	Rapa	fusto	29	15991	75	6837	1300	12,8	1276	2292	3994	1,79
		radici	1186	8059	1169	6894	947	46,9	2042	2668	4656	13,0
	Porro radici	foglie/fusto	877	7841	938	8242	1185	37,5	1295	2669	3611	13,2
-	Forto radici	radici	4090	8179	4242	8775	3311	146	6896	3990	5894	63,3
Vegetali		foglie	739	17066	882	6992	2131	45,1	4522	3335	3712	8,97
ge	Finocchio	fusto	328	11111	394	956	1678	18,2	11111	5268	2005	6,6]
Ve		radici	479	6352	518	5565	1952	22,9	5738	3384	1574	7,49
-		frutti	12,4	971	52	5645	1129	8,6	636	3087	1295	2,24
	Pomodoro	foglie	216	32317	296	5743	2962	45,7	1434	2194	4879	6,15
	romodoro	fusti	35,9	17260	60	5020	1306	17,4	1077	1979	1124	2,04
		radici	1196	20397	1163	7341	1405	52,6	984	1889	1381	15,79
	Datata	periderma	140	1417	128	6442	702	6,7	203	2279	788	3,93
	Patata rossa	tubero	5,8	567	28	7556	654	4,4	143	2136	693	1,75
		periderma	193	1108	159	6598	965	8,0	206	2563	1021	4,72
	Patata bianca	tubero	37,3	715	70	7082	1183	7,3	208	2634	1309	2,57
		Rapa	34639	33150	25784	9483	6520	792	940	4788	972	605
		Рогго	22961	30692	20410	6162	4646	540	703	3672	1214	437
6	Interfaccia radici	Porro	34827	41116	25236	9670	6344	710	936	4009	826	648
Suolo		Pomodoro	24852	23981	19628	6094	4195	618	555	3672	831	488
S		0-10 cm	26866	37235	22545	6881	5255	672	605	3818	702	514
	Profilo	10-30 cm	31473	36744	26357	8062	5457	814	884	3752	669	599
	110110	80-100 cm	52766	4557	37369	10522	7133	867	781	1787	189	839
ve	A 5- Microelementi			-								
VUE	3- Microelement		Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
	No. of Contract of	foglie	<0,01	0,18	23,9	38,9	<0,02	0,21	<0,06	2,43	8,11	0,09
	Cavolo nero	fusto	<0,01	⊲0,04	17,0	39,2	<0,02	0,17	<0,06	1,87	4,92	0,07
		radici	<0,01	2,56	18,4	180,6	<0,02	0,36	0,97	42,91	63,1	0,08
		foglie	<0,01	0,27	23,1	18,9	<0,02	0,20	<0,06	1,78	5,10	0,07
	Rapa	fusto	<0,01	<0,04	22,8	47,1	<0,02	0,22	<0,06	4,04	3,21	0,07
		radici	<0,01	1,16	15,9	105,9	<0,02	0,25	0,34	11,19	19,4	0,08
	Porro radici	foglie/fusto	<0,01	0,78	12,5	82,9	<0,02	0,22	0,16	9,26	14,9	0,07
=	Torroradici	radici	<0,01	5,35	16,4	233,5	0,06	0,74	2,19	129,47	59,4	0,10
1		foglie	<0,01	0,96	27,1	84,1	<0,02	0,12	0,09	7,31	18,6	0,07
Vegetali	Finocchio	fusto	<0,01	0,68	32,8	77,9	<0,02	0,12	<0,06	7,46	17,3	0,06
>	7.6.00 (radici	<0,01	0,79	21,6	75,2	<0,02	0,17	<0,06	5,61	27,3	0,07
		frutti	<0,01	<0,04	6,4	2,38	<0,04	<0,01	<0,02	0,03	50,0	<0,04
		foglie	<0,01	<0,04	49,0	52,5	< 0.04	0,20	<0.02	0,09	4016	<0,04
	Pomodoro	fusti	<0,01	<0,04	9,7	23,6	< 0,04	<0,01	<0,02	<0,02	507	<0,04
		radici	<0.01	0,36	10,6	68,1	<0.04	<0,01	0,18	6,40	172	<0,04
		periderma	<0,01	<0,04	6,3	6.9	<0,04	<0,01	<0,02	2,47	13,9	<0,04
	Patata rossa	tubero	<0.01	<0,04	2,7	1,5	<0.04	<0,01	<0,02	<0,02	9,3	<0,04
	Patata bianca	periderma	<0,01	<0,04	5,8	8,4	<0.04	<0,01	<0.02	2,00	18,0	<0,04
		tubero	<0.01	<0.04	4,2	2,9	<0.04	<0.01	< 0.02	1,52	17,1	<0.04
		Rapa	0,68	24,7	38,6	1685	1,57	1,41	13,3	132	239	0,71
	*	Porro	0,69	17,6	27,3	1484	1,08	1,08	10,6	148	211	0,54
0	Interfaccia radici	Porro	0,72	24,8	36,4	1564	1.49	1,34	12,7	145	221	0,71
Suolo		Pomodoro	0,50	20,6	32,0	1097	1,11	1,10	10,9	79,1	413	0,28
S		0-10 cm	0,72	23,3	28,0	1595	1,26	1,26	11,4	158	189	0,63
	Profilo	10-30 cm	0,78	28,8	34,0	1612	1,47	1,40	12,4	102	193	0,78
		80-100 cm	0,16	35,3	39,3	311	2,55	0,85	19,9	80,5	53,6	<0,10
VC	A 5- Microelementi		Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
	L - MINISCHEMENT	foglie	2,40	4,07	0,19	2,78	0,90	0,24	23,1	0,06	0.08	49,2
	Cavolo nero	fusto						0,24	33,1		0,08	50,3
	Cavolo nero	radici	2,30 7,87	1,09	0,22	2,71	0,76	0,29	40,9	0,15	4,35	
				8,90	3,42	22,1	1,65	0,23		0,13		109 36,8
	Dana	foglie	1,98	7,92	0,09	2,08	0,82		12,5	0,17	0,02	
	Rapa	fusto	1,84	2,23	0,01	1,91	0,95	0,26	27,1	0,15	0,03	19,9
		radici	6,49	5,67	1,60	14,0	1,06	0,47	23,5	0,12	2,07	44,1
	Porro radici	foglie/fusto	4,92	0,95	1,21	10,2	1,09	0,51	13,8	0,15	1,27	45,8
-	and the second s	radici	16,6	7,58	7,74	41,4	2,43	0,47	34,7	0,18	6,93	102
Vegetali	**	foglie	4,59	2,95	1,18	9,75	1,02	0,31	16,5	0,19	1,04	50,9
8	Finocchio	fusto	3,09	0,24	0,78	5,51	1,17	0,28	25,3	0,16	0,29	55,9
>		radici	3,57	0,08	0,95	10,70	1,28	0,39	23,2	0,08	0,70	38,3
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	frutti	0,28	0,13	<0,01	0,85	0,39	<0,05	1,3	<0,09	<0,08	27,2
	Pomodoro	foglie	1,11	0,80	0,52	2,53	0,59	2,46	44,9	<0,09	<0,08	37,0
	- omodero	fusti	0,43	<0,03	<0,01	2,15	0,50	0,32	32,9	<0,09	<0,08	60,1
		radici	6,76	0,66	1,28	11,51	0,79	0,15	46,3	<0,09	1,71	67,8
	Patata morre	periderma	0,87	<0,03	<0,01	1,62	0,60	<0,05	2,72	<0,09	<0,08	19,2
	Patata rossa	tubero	0,25	<0,03	<0,01	0,89	0,67	⊲0,05	1,15	<0,09	<0,08	18,7
	Detet Man	periderma	1,12	<0,03	0,26	2,14	0,58	<0,05	2,37	<0,09	<0,08	23,6
	Patata bianca	tubero	0,37	<0,03	0,41	1,22	0,57	<0.05	1,87	<0.09	<0.08	22,5
		Rapa	90,1	2,52	33,1	248	8,5	9,87	84,6	0,43	50,5	433
		Рогго	67,4	3,01	27,5	265	7,8	25,2	81,2	0,40	35,2	373
	Interfaccia radici	Porro	92,0	2,50	30,0	252	8,3	9,83	83,3	0,40	51,1	345
Suolo		Pomodoro	75,4	1,58	27,1	182	6,49	9,02	63,6	<0,12	39,6	310
S		0-10 cm	76,8	1,51	28,3	230	7,7	11,2	87,2	<0,12	39,8	321
	Profilo	10-30 cm	86,8	1,75	30,7	281	10.9	10,2	92,2	<0.12	46,6	357
	A & ULLIU	10-50 CIII				237	7,2	2,74	27,5			
	A TOTAL	80-100 cm	101,4	3,31	48,7	7 4 7	7.7	7 / / /	77	<0,12	84,3	228

	CA 6					4866	022.14 г	nN - 599	252.78 n		slm	
VC.	A 6 – Macroelem	enti (mg kg 1)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	41	18594	125	8203	2000	41,6	603	3844	8125	2,5
	Cavolo nero	fusto	140	6572	208	7664	1618	13,0	1696	3078	3439	3,4
	The state of the s	radici	1656	5290	1971	5536	2098	51,1	1032	3549	3231	13,6
		foglie	167	12931	239	8307	1951	40,2	626	4248	5690	4.1
	Rapa	fusto	101	16015	134	6004	1880	15.5	975	3226	6135	2,9
=	N	radici	1294	7732	1354	4102	3472	38,7	2898	7094	7378	19.2
=	District Control of the	periderma	366	1035	307	6515	980	12.9	279	1921	757	6,5
Vegetali	Patata vecchia	tubero	6.7	403	22	7678	792	3.0	230	1548	609	1,4
	2	periderma	67.8	1290	79	6401	620	3,4	276	3009	891	3,0
	Patata bianca	tubero	4.8	502	33	6830	852	3.7	291	2871	923	2,0
		Acini uva bianca	82,2	5524	60.0	6879	1560	18,4	946	3341	466	4,9
	Vite	Acini uva nera	34.0	1628	37.7	5768	416	1.19	89.0	822	294	1,8
	Ulivo	Oliva	14,3	723	74.7	7872	333	4,36	171	1463	597	1,4
_			17761	9344	18301	4919	3815	349	402	1174	467	44
	Interfaccia	Cavolo nero										
2	radici	Rapa	23991	8696	19410	7616	4348	363	622	1242	408	54
Suolo		0-10 cm	26248	11866	20511	8173	4676	391	675	1210	347	56
9	Profilo	10-30 cm	25473	10174	19795	7886	4401	364	782	836	572	57
		80-100 cm	33385	9617	29242	7772	6106	4936	584	518	465	58
VC.	A 6 - Microeleme	nti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	<0.01	0.32	25.4	39.8	< 0.04	0.16	<0.06	1,31	4,95	0.0
	Cavolo nero	fusto	<0.01	0,27	16,41	51.5	<0.04	0,13	<0.06	5,61	4,30	0,0
	(70.00	radici	<0.01	3,35	14.8	94.1	<0.04	0,18	1.16	31.36	16,5	0.0
		foglie	<0.01	0,39	17,48	29,8	<0.04	0,21	<0.06	1,66	7,16	0,0
	Rapa	fusto	<0.01	0.18	27,70	69.9	<0.04	0.24	<0.06	2,00	3.96	0,0
-	Кара	radici	<0.01	2,17	22,2	91.8	<0.04	0,29	0.48	18,66	15,4	0,0
Vegetali			<0.01	<0.04		12,1	<0.04	<0.01	<0.06	1.11	16,5	
S	Patata vecchia	periderma			6,6							<0,0
		tubero	<0,01	<0,04	3,4	2,7	<0,04	<0,01	<0,06	<0,02	5,5	<0,0
	Patata bianca	periderma	<0,01	<0,04	4,5	8,8	<0,04	<0,01	<0,06	0,14	14,5	<0,0
	E drover terrores	tubero	<0,01	<0,04	3,1	3,3	<0,04	<0,01	<0,06	<0,02	8,8	<0,0
	Vite	Acini uva bianca	<0,01	<0,04	12,1	65,8	<0,04	<0,01	<0,06	1,27	10,6	0,2
		Acini uva nera	<0,01	<0,04	11,6	6,37	<0,04	<0,01	<0,06	0,46	5,47	0,5
	Ulivo	Oliva	<0,01	<0,04	11,3	38,9	<0,04	<0,01	<0,06	6,48	14,9	0,3
	Interfaccia	Cavolo nero	0,07	20,3	10,1	354	0,77	0,54	9,02	59,7	78,0	<0,1
	radici	Rapa	0,18	20,3	14,4	426	1,01	0,47	9,21	110	81,5	<0,1
Suolo		0-10 cm	<0.05	21,7	13,8	490	1,10	0,55	9,82	57.9	95,1	<0,1
S	Profilo	10-30 cm	<0.05	21,3	13,7	454	1,10	0,47	9,33	82,0	52,5	<0.1
	100	80-100 cm	0,25	53,8	17,7	1923	1,49	0,70	13.9	48,7	36,7	<0.5
VC.	A 6 - Microeleme		Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
		foglie	1.84	11,5	0,10	1,81	0,78	0,18	14.1	0.24	0.03	30.
	Cavolo nero	fusto	2.18	1.96	0,62	2.15	0,83	0,22	15,5	0,26	0,06	13
	Carolo IICI O	radici	6,81	7,59	3.06	10.6	1,11	0,28	14,8	0,25	2,74	28
		A	2,16	12,9	0.15	2,44	0,83	0,24	13,3	0,25	0.01	36
	D	foglie	2,10		-,	2,44		0,12		0,26	0,01	
-	Rapa	fusto		4,56	0,10		0,78		25,2			21
Vegetali		radici	6,42	9,61	1,63	7,68	1,50	0,20	22,5	0,22	2,20	44
50	Patata vecchia	periderma	1,57	0,10	<0,01	2,12	0,70	<0,05	2,31	<0,09	0,24	14
>	- Hanna Percent	tubero	0,25	<0,03	<0,01	0,91	0,60	<0,05	1,18	<0,09	<0,08	11
	Patata bianca	periderma	0,46	0,28	1,78	1,08	0,55	<0,05	2,83	<0,09	<0,08	24
	z atata otanca	tubero	0,24	0,56	<0,01	0,77	0,56	<0,05	1,36	<0,09	<0,08	17
	Vite	Acini uva bianca	0,20	<0,03	<0,01	0,76	0,96	<0,05	17,7	<0,09	<0,08	9,1
	vite	Acini uva nera	0,12	<0,03	<0,01	0,64	0,74	<0,05	3,17	<0,09	<0,08	8,9
	Ulivo	Oliva	0.12	<0,03	0.45	0,71	0,61	<0.05	2,50	<0.09	<0.08	16
	Interfaccia	Cavolo nero	44,7	1.91	22,8	74,3	4.9	1.45	21,0	0.49	27,1	10
4	radici	Rapa	52.5	2,72	23.0	77.1	5,3	1,98	21.7	0.48	34.5	1
Suolo	India	0-10 cm	57.9	1.71	24.0	80,2	5,2	1,99	26,2	<0.40	36,7	11
S	Profile	10-30 cm	54.7	2,33	25,7	75,7	5,3	1,99	26,0	<0,40	36,0	11
-	Fromo											
		80-100 cm	89,1	2,12	33,1	167	10,4	1,78	24,0	<0.40	50.7	1

VC.	A 7					4	868264.5	50 mN _	601777.1	1 mE – 1	51 m slm	ı
VCA	7- Macroelemer	ıti (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		Acini	10,2	2116	194	5848	488	1,74	132	693	443	1,57
Veg	Vite	Foglie	32,5	16392	109	2157	1820	24,7	459	590	618	1,40
		Rami	80,2	11301	81,9	7298	2642	16,3	812	1791	565	3,64
Suo	Profilo	0-13 cm	18131	14712	32604	4978	4064	1272	483	2004	4684	311
		13-26 cm	15586	14314	33082	3968	4588	1376	432	2123	6632	304
VCA	7- Microelemen	ti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
	Vite	Acini	<0,01	<0,04	18,5	19,3	<0,04	<0,01	<0,06	0,32	6,71	0,57
, S.		Foglie	<0,01	<0,04	8,00	72,8	<0,04	<0,01	<0,06	7,20	3,12	0,52
		Rami	<0,01	<0,04	16,0	103	<0,04	<0,01	<0,06	1,39	8,36	0,44
Suo	Profilo	0-13 cm	6,51	179	16,3	2751	0,87	7,95	17,81	50,9	174,2	6,52
Suo	Fromo	13-26 cm	6,60	189	13,0	2744	0,80	8,27	17,73	55,5	164,6	7,71
VCA	7- Microelemen	ti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
D0		Acini	0,11	<0,03	0,29	0,91	0,82	<0,05	7,25	<0,09	<0,08	12,0
, S	Vite	Foglie	0,29	<0,03	0,51	0,85	1,03	<0,05	29,9	0,45	<0,08	12,5
	> viie	Rami	0,36	<0,03	<0,01	1,32	0,86	<0,05	31,0	2,45	<0,08	52,1
Suo	Profilo	0-13 cm	34,8	7,79	63,4	498	116	39,1	658	12,5	59,1	1630
500	Гиши	13-26 cm	30,4	8,35	52,8	546	123	27,8	640	17,0	62,0	1742

Tabella 6.5. Segue.

V	CA 8				1,2	486	56992.71	mN - 60	0440.65	mE – 45	m slm	
VC	A 8-Macroelen	nenti (mg kg 1)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
	1	foglie	20,1	17937	90,9	9921	2214	25,9	574	4198	5913	4,25
	Cavolo nero	fusto	21,5	4904	29,7	10106	1308	11,2	751	3831	3690	4,06
Vegetali		radici	1055	8297	1794	10291	1396	57,0	909	3622	2521	9,81
et		frutti	28,3	1022	55	7531	888	6,4	531	2343	881	2,08
-	Pomodoro	foglie	195	43374	280	7290	5945	40,4	1584	2730	11381	4,97
	romodoro	fusti	22,5	11563	41	6962	1834	5,7	1308	1914	1515	1,61
		radici	338	14883	354	7720	1719	24,5	1886	1353	2244	5,79
	Interfaccia	cavolo nero	17114	17270	16258	7491	2769	250	723	1424	603	489
0	radici	pomodoro	11489	13521	13052	3939	2618	291	408	2149	946	416
Suolo		0-10 cm	30109	16403	26093	8509	7987	409	591	2419	1519	500
S	Profilo	10-30 cm	27514	15860	27398	7351	7857	425	461	2405	1431	460
	7	80-100 cm	28757	4936	31777	7260	4490	353	396	733	194	430
VC	A 8 - Microelen	nenti (mg kg 1)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	0,02	0,04	17,1	34,8	<0,02	0,02	<0,06	<0,20	4,35	<0,02
	Cavolo nero	fusto	0,02	0,06	12,2	24,2	<0,02	0,02	<0,06	1,01	3,65	<0,02
Vegetali		radici	0,01	0.90	14,7	256	<0.02	0,01	0,37	61,11	71,88	<0,02
et		frutti	<0.01	<0,04	7,0	2,5	<0.04	<0,01	<0,02	1,95	35,3	<0,04
e	n .	foglie	0,02	<0,04	66,5	96,8	<0.04	<0,01	<0,02	<0,02	2703	<0,04
	Pomodoro	fusti	<0.01	<0,04	12,0	26,9	<0.04	<0.01	<0,02	0,12	118	<0,04
		radici	<0.01	<0,04	11,9	56,7	<0,04	<0,01	<0,02	4,35	51,8	<0,04
	Interfaccia	cavolo nero	0,08	10,5	12,5	1315	0,70	17,3	7,86	77,0	188	<0,20
0	radici	pomodoro	0,12	12,97	14,5	1056	0,47	0,55	7,23	29,3	190	0,08
Suolo		0-10 cm	0,09	22,9	24,4	1473	1,50	0,35	14,8	112	79,0	<0,50
S	Profilo	10-30 cm	<0.05	26,0	19,2	1768	1,37	0,39	15,1	107	83,7	<0,50
		80-100 cm	<0.05	34,1	16,6	485	1,54	0,28	17,8	52,6	33,0	<0,50
VC	A 8 - Microelen	nenti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
		foglie	0,28	11,11	0,08	0,38	1,19	0,28	27.3	0,27	0,06	21,0
	Cavolo nero	fusto	0,26	1,64	0.08	0,37	1.10	0.35	17,7	0,28	0.05	18,0
Vegetali	AMPRES AND CO.	radici	4,40	4.90	2,87	12.1	1.95	0,19	47,0	0.27	1,82	62,2
e t		frutti	0,30	<0.03	<0.01	0.90	0,62	2,10	2,46	<0.09	<0,08	17,8
è		foglie	1,11	0.89	0.06	2,23	0,65	2,43	100	<0.09	<0.08	21,1
	Pomodoro	fusti	0.33	< 0.03	< 0.01	1.19	0.57	0.02	35,3	<0.09	<0.08	53,0
		radici	1,42	0,72	0.24	5,30	0,66	<0,05	57,1	<0.09	<0.08	67,7
	Interfaccia	cavolo nero	29,4	1,6	14,62	69,5	5,76	3,33	63.9	0,45	22,09	138
0	radici	pomodoro	22,4	0,70	14,2	84	4,69	4,31	53,1	<0.12	18,4	164
Suolo		0-10 cm	72,2	4,0	47,5	61,3	5,95	5,08	94.7	<0,12	50,1	144
S	Profilo	10-30 cm	71,4	4,4	54,0	66,5	6,10	2,17	54,0	<0,12	46,4	145
	1977	80-100 cm	65,2	4.8	35,2	44.6	6.05	1,44	20.8	<0.12	49.4	73,9

V	CA 9				= 11	486694	0.11	mN - 60	0494.75	mE - 47	m slm		
VC.	A 9 - Macroelement	ti (mg kg ^{-l})	Al	Ca	Fe	K		Mg	Mn	Na	P	S	Ti
723	0	foglie	417	4618	412	8 48	888	1281	122	644	915	422	18,8
Veg	Graminacee	radici	799	4449	1080	7 39	22	1009	318	1209	744	3024	72,5
-	Muschio	fusticino	2906	10460	449	3 60	70	2132	109	1125	1307	785	24,8
	Interfaccia radici	graminacee	23027	5722	1909	9 74	01	2457	243	801	562	139	496,0
9		0-10 cm	21926	9240	1996	65	23	3915	299	699	714	440	475,1
Suolo	Profilo	10-30 cm	6823	9984	4413	6 29	16	717	151	199	367	10618	149,6
-	7.4.	80-100 cm	4457	7149	5274	2 18	90	1540	161	156	184	32594	69,4
VC.	A 9 - Microelementi	(mg kg ^{-l})	Ag	As	В	Ba		Be	Cd	Co	Cr	Cu	Hg
	Graminacee	foglie	1,69	2,09	2,0)7	44	<0,02	0,04	1,05	6,02	9,85	0,08
Veg	Grammacee	radici	0,08	4,29	2,1	1 8	22	<0,02	0,20	2,97	32,1	10,1	0,02
-	Muschio	fusticini	0,01	3,09	3,4	14 12	13	<0,02	0,02	1,02	136	12,8	0,02
	Interfaccia radici	graminacee	<0,05	6,35	7,7	70	05	0,85	5,71	6,22	87,0	18,7	<0,10
9		0-10 cm	<0,05	8,07	9,0)2 9	40	0,78	9,23	7,20	180	23,9	<0,10
Suolo	Profilo	10-30 cm	13,79	146,04	10.	,4 23	185	0,40	10,0	3,57	41,1	62,2	9,83
100		80-100 cm	20,15	211,12	5.	,4 3	56	0,31	7,1	3,30	36,6	61,5	21,31
VC.	A 9 - Microelementi	(mg kg ⁻¹)	Li	Mo	Ni	Pb	3.4	Sb	Sn	Sr	TI	V	Zn
-	Graminacee	foglie	2,15	1,98	3,1	9 1	7,9	7,79	0,27	20,7	0,15	3,41	29,7
Veg	Grammacee	radici	4,09	6,11	8,0	7 8	8,7	31,07	0,74	94,5	0,21	9,27	109
-	Muschio	fusticini	7,79	4,04	6,3	8	,40	2,69	0,29	48,42	0,28	4,82	24,4
	Interfaccia radici	graminacee	31,8	1,54	14,5	6 1	8,6	3,00	1,62	29,6	0,40	29,0	38,0
Suolo		0-10 cm	34,3	1,88	19,7	73 2	5,1	4,86	1,49	47,7	0,47	28,1	54,0
Su	Profilo	10-30 cm	11,8	8,40	16,2		67	361	1,14	556	53,4	35,6	311
	Marie Marie and American	80-100 cm	5,68	11,20	17,8	31 (59	685	0,82	547	73,8	27,0	412

Tabella 6.5. Segue.

	CA 10											
TC.	A 10 – Macroelement		Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
	200	foglie	29,02	24157	81,3	9647	1263	25,25	653	3529	5725	4,0
	Cavolo nero	fusto	34,13	6333	94,2	7637	1695	7,29	1480	4153	3190	4,9
		radici	6,53	4323	55,6	10250	1899	11,44	1430	1732	540	2,8
	_ 1.0	Foglie + cime	42,73	10326	114	9611	874	23,27	1056	3415	5369	4,0
	Rapa	fusto	29,56	4271	156	9984	557	6,69	1767	2258	2631	3,
_		radici	481,16	6559	6646	9256	2136	178	957	1290	3718	36
2		frutto	45,3	1036	74	6171	910	5,7	870	1685	902	1,8
Vegetali	La constitute de	frutto	12,6	685	51	6698	1044	8,7	879	1413	887	1,3
>	Pomodoro	foglie	105	38407	141	7453	3415	39,0	1159	1230	12145	3,
		fusti	49,0	10631	70	4593	2015	9,7	1468	1134	1848	1,
		radici	970	17592	959	6865	1814	33,8	1775	1360	1681	13,
	Patata bianca	periderma	228	1061	158	7430	832	5,1	436	2550	780	5,
	I mata bianca	tubero	8,2	277	23	7655	737	3,9	292	2330	773	1,
	Patata rossa	periderma	104	537	100	7141	891	3,7	178	3117	748	3,
	I HUHUN I VOOM	tubero	5,9	202	18	7628	830	2,8	141	2427	729	1,
	Interfaccia radici	Rapa	21302	3424	20986	7306	3716	336	613	614	155	5.
0	Internetia radici	Pomodoro	19411	7812	19332	5267	4344	405	411	947	386	4
Suolo		0-10 cm	24060	5912	21923	8231	4226	357	664	655	226	5
2	Profilo	10-30 cm	26307	5990	22583	9033	4509	408	769	651	209	5
		80-100 cm	16040	1573	18055	5998	2456	195	508	476	393	4
C	A 10 - Microelementi		Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
•	Cavolo nero	foglie	0,02	0,07	20,71	69,0	<0,02	0,014	<0,06	0,32	3,10	<0,
		fusto	0,02	0,04	15,67	107	<0,02	0,013	<0,06	0,63	4,24	<0,
		radici	0,02	0,08	8,50	5,13	<0,02	0,016	<0.06	0,80	6,09	<0,
		Foglie + cime	0,02	0.06	21,92	42,6	<0.02	<0,01	<0.06	2,15	5,50	<0,
	Rapa	fusto	0,02	0,08	17,83	77,3	<0.02	<0.01	<0.06	9,43	3,45	<0.
		radici	0,02	11,71	9,57	353	<0.02	0.148	2,89	30,14	21,0	<0.
		frutto	<0.01	<0.04	6,6	3,2	<0.04	< 0.01	<0.02	2,52	35.5	<0.
		frutto	<0.01	<0.04	9,3	1,5	<0,04	<0.01	<0,02	1,83	19,3	<0.
	Pomodoro	foglie	<0,01	<0,04	34.9	53,5	<0,04	0,27	<0,02	<0,02	919	<0.
	a contract of	fusti	<0.02	<0.04	11.2	13.6	<0.04	<0.01	<0.02	0.35	186	<0,
		radici	0.035	0.71	9.9	40,0	<0.04	0,22	0.17	4.64	57.3	<0.
	B 11	periderma	<0.02	<0.04	5,6	18,0	<0.04	<0.01	<0,02	0,02	16,1	<0.
	Patata bianca	tubero	<0.02	<0.04	2,6	3,9	<0.04	< 0.01	<0.02	<0.02	8.8	<0.
	• // / / / /	periderma	<0,02	<0.04	4.5	8,6	<0.04	< 0.01	<0.02	<0.02	11.1	<0.
	Patata rossa	tubero	<0.02	<0.04	2,3	1.9	<0.04	<0.01	<0.02	<0,02	7,2	<0.
		Rapa	0.06	23,27	11.1	473	0,95	3.4	8,52	45.5	36.6	<0.
_	Interfaccia radici	Pomodoro	0,08	24,82	10,7	507	0,80	0,60	9,15	25,5	74	<0.
ĕ		0-10 cm	0.13	25,41	13.1	773	1,03	5.9	8,86	36,2	39.6	<0.
Suolo	Profile	10-30 cm	0.12	26,55	14,3	701	1.11	6.0	9,35	36,1	39.9	<0.
	Tromo	80-100 cm	0.06	16,27	7,3	1387	0,70	1,6	6,42	30,6	27,8	<0.
C	A 10 - Microelementi		Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
_	T TO - MIKTOCKINGING	foglie	0,32	1.49	0.07	0.11	1.13	0,37	28,00	0,21	<0.08	1:
	Cavolo nero	fusto	0.32	1.31	0.08	0,37	1.13	0,29	17,66	0.11	<0.08	10
	CHIOLO MILIO	radici	0.53	0.01	0,09	0,22	1.02	0,34	32,26	0,23	<0.08	3
		Foglie + cime	0.33	2,88	0.07	0.09	1.06	0,35	6,51	0,29	<0.08	2
	Rapa	fusto	0.28	0.89	0,09	0.06	1,22	0,28	10.9	0,23	<0.08	1
	Lupa	radici	21.6	5,45	8,23	37,2	1,76	0,24	22,6	0,25	7,43	4
=	-	frutto	0,40	0.06	<0,01	1,08	0,53	2,05	1,73	<0,09	<0.08	10
v egetall		frutto	0,26	<0.03	<0,01	0,86	0,66	1,25	0,92	<0.09	<0.08	1
80	Pomodoro	foglie	0,62	<0,03	<0,01	0,99	0,54	1,36	44,9	<0.09	<0.08	1
•	Tolliodoro		-	<0.03	<0.01		0,48	0,12	17,5	<0.09	<0.08	3.
		fusti	0,49			1,25						
	1.0	radici	4,60	0,60	0,67	7,44	0,93	<0,05	35,1	<0,09	1,16	4
	Patata bianca	periderma	0,81	0,16	<0,01	1,49	0,50	<0,05	2,45	<0,09	<0,08	1.
		tubero	0,24	0,22	<0,01	0,90	0,40	<0,05	0,75	<0,09	<0,08	1
	Patata rossa	periderma	0,57	1,11	<0,01	1,24	0,62	<0,05	1,42	<0,09	<0,08	1
		tubero	0,24	1,00	<0,01	0,69	0,74	<0,05	0,70	<0,09	<0,08	1
	Interfaccia radici	Rapa	53,7	1,34	18,9	83,6	6,15	1,60	15,5	0,51	30,1	9
9		Pomodoro	52,0	0,95	22,2	102	5,89	1,50	23,5	<0,12	31,1	
Suolo	a man	0-10 cm	60,2	1,19	20,3	90,2	6,81	1,73	22,7	<0,12	33,6	1
2	Profilo	10-30 cm	64,2	1,11	21,4	100	6,81	1,73	22,7	0,42	36,2	1
	100	80-100 cm	35,1	0,85	14,0	50,6	6,90	1,07	27,9	0,45	22,0	6

Tabella 6.5. Segue.

VC	CA 11					48664	188.54 m	N - 599	485.84 n	E – 12 r	n slm	
VCA	A 11 - Macroelement	i (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	18,12	7568	92,6	9141	1169	23,4	600	3283	4857	3,85
	Cavolo nero	fusto	18,89	2310	76,5	7667	960	4,1	770	944	496	2,40
Vegetali		radici	1067	4112	1295	8956	1885	42,8	974	1924	2259	11,21
Set	n. 2.1	frutti	13,6	543	50	7063	1087	15,3	694	2236	858	1,80
2	Pomodoro	foglie	88,4	33058	167	6911	2881	321,4	1338	1653	5006	2,52
		periderma	178	811	149	7417	819	6,8	220	1908	735	3.97
	Patata bianca	tubero	6,3	287	28	7582	814	5,1	162	2027	759	1,46
	Interfaccia radici	Cavolo nero	20169	2668	22148	6823	3657	430	532	769	598	460
Suolo		0-10 cm	18132	2143	23077	6272	3414	504	469	997	1256	394
Suc	Profilo	10-30 cm	19037	1911	23310	6340	3598	524	451	925	1041	410
•,		80-100 cm	15022	1079	18378	5737	2509	297	439	386	141	440
VCA	A 11 - Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	0,015	0,06	12,24	49,5	<0,02	<0,05	<0,06	0,71	4,61	<0,04
	Cavolo nero	fusto	0,014	0,08	5,31	271	<0,02	0,06	<0,06	2,37	2,64	<0,04
=	20300000	radici	0,41	1,85	9,19	1386	<0,02	0,36	<0,06	15,11	21,18	<0,04
get	n 1	frutti	<0,01	⊲0,04	8,4	4,5	<0,04	<0,01	<0,02	2,12	53,1	<0,04
Vegetali	Pomodoro	foglie	0,023	<0.04	52,7	286,5	<0.04	1,30	<0.02	<0.02	2132	<0,04
	Detects Manage	periderma	<0,01	<0,04	6,9	16,5	<0,04	<0,01	<0,02	1,03	12,2	<0,04
	Patata bianca	tubero	<0,01	<0,04	3,8	2,5	<0,04	<0,01	<0,02	0,17	11,3	<0,04
	Interfaccia radici	Cavolo nero	1,20	37,63	12,3	1413	0,90	2,67	9,93	44,8	80,4	0,08
Suolo	771	0-10 cm	2,22	51,18	13,3	2378	0,86	2,1	11,2	66,7	117,8	0,31
Suc	Profilo	10-30 cm	2,35	51,98	13,4	2354	0,85	1,9	11,3	44,1	124,1	0,25
-	100	80-100 cm	0,41	25,65	10,0	531	0,64	1,1	9,03	48,8	23,3	0,22
VCA	A 11 - Microelementi	(mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
	Country	foglie	0,29	0,03	1,10	0,34	1,20	0,39	10,5	0,24	0,05	36,8
or 2	Cavolo nero	fusto	0,25	0,03	0,51	10,9	1,13	0,36	13,2	0,21	0,05	33,9
		radici	4,58	0.95	1,18	68,5	1,80	0,22	28,2	0,25	1,38	80,4
	D	frutti	0,30	<0.03	<0,01	0.98	0,48	1,74	1,35	<0,09	<0.08	16,5
	Pomodoro	foglie	0.94	<0.03	0.01	1,60	0.46	1,72	45.5	<0.09	<0.08	25,9
	D. V. 11	periderma	0.95	<0.03	0,63	2,49	0,60	<0.05	2,74	<0,09	<0.08	19,7
	Patata bianca	tubero	0,25	<0.03	<0.01	0,74	0.63	<0.05	1.06	<0,09	<0,08	15,2
	Interfaccia radici	Cavolo nero	56,2	1,80	19,8	324	17,2	1,78	50,5	0,41	30,7	181
9	h h r	0-10 cm	55,5	2,83	19,6	521	29,9	1,89	91,1	<0,12	30,1	256
Suolo	Profilo	10-30 cm	58,6	2,25	20,7	564	28,2	1,96	85,5	<0,12	31,3	265
44		80-100 cm	39,9	1,52	14,2	143	9,75	1,01	13,7	0,45	22,7	87,7

VC	CA 12					486	5024.85 1	mN – 599	259.73 n	nE – 1 m	slm	
VCA	12 – Macroelemen	ti (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
bo		foglie	229	14405	302	9232	907	25,79	867	3048	3860	4,89
Veg	Rapa	fusto	349	7043	548	10175	1431	16,85	1232	3553	3855	6,07
		radici	701	6722	986	9953	2559	23,14	1201	4226	4945	7,87
	Interfaccia radici	Rapa	28811	12933	24331	10394	4931	405	1016	1338	1061	548
Suolo		0-10 cm	25938	22506	27215	8779	5826	500	782	1804	1875	390
Su	Profilo	10-30 cm	36320	22443	27676	13481	6146	474	1420	2062	1967	586
		80-100 cm	34331	19213	27717	11181	9134	742	1260	1598	578	449
VCA	12 - Microelement	i (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
DO.		foglie	0,014	<0,04	15,52	107	<0,02	0,025	<0,06	1,17	5,57	<0,04
Veg	Rapa	fusto	0,014	<0,04	15,18	189	<0,02	0,029	<0,06	8,82	6,39	<0,04
		radici	0,012	1,30	14,38	302	<0,02	0,049	<0,06	16,43	9,72	<0,04
	Interfaccia radici	Rapa	0,59	30,1	14,56	1438	1,23	12,9	11,8	50,7	50,2	0,19
Suolo		0-10 cm	1,01	37,8	13,7	2418	1,04	22,5	13,6	48,4	57,0	0,71
Su	Profilo	10-30 cm	1,12	37,1	18,0	2403	1,51	22,4	15,1	55,9	63,8	0,98
		80-100 cm	0,38	27,7	17,1	1583	1,42	19,2	13,2	61,4	58,2	0,51
_VC	A 12 - Microelemen	ti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
D0		foglie	0,83	4,76	<0,02	1,42	1,27	0,31	28,7	0,21	<0,08	27,7
Veg	Rapa	fusto	1,26	4,55	0,15	2,26	1,39	0,26	30,4	0,24	<0,08	39,8
		radici	2,64	9,32	0,87	4,91	1,64	0,23	35,2	0,28	0,87	57,9
	Interfaccia radici	Rapa	58,1	1,74	23,5	98,1	18,7	3,47	96,6	1,29	43,5	214
Suolo		0-10 cm	56,6	2,24	29,1	111	30,3	3,74	164	0,35	43,3	294
Su	Profilo	10-30 cm	62,4	2,14	28,2	113	31,2	5,33	178	1,01	56,9	331
		80-100 cm	56,9	2,05	38,0	94,8	10,6	2,24	61,3	2,32	74,3	200

Tabella 6.5. Segue.

VC	A 13					48679	085.97mN	601785	.53 mE –	- 132 m s	lm	
VCA	13 – Macroelement	i (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
1		frutti	12,2	1055	59	5869	1211	9,4	797	3064	836	2,24
Vegeta Ii	Pomodoro	foglie	224	39888	214	7651	3638	76,4	1564	2736	8616	5,08
	romodoro	fusto	164	15108	159	6090	1182	12,1	1472	1933	599	3,83
		radici	4348	11904	3851	6780	1916	125,7	1734	1356	1876	55,10
	Interfaccia radici	pomodoro	26427	5924	21876	7210	5589	707	902	1413	1182	508
0		0-10 cm	23675	7740	23595	5460	5285	764	379	1355	949	440
Suolo	Profilo	10-30 cm	32816	8443	25090	9160	6754	884	643	1481	1266	629
S	Fromo	20-25 (*)	33413	11587	23413	10079	6944	802	762	1754	1714	625
		80-100 cm	37067	8529	28856	9326	6911	837	636	877	536	662
VCA	13 - Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
3		frutti	<0,01	<0,04	8,3	4,0	<0,04	<0,01	<0,06	2,05	13,4	<0,04
i et	Pomodoro	foglie	<0,01	<0,04	25,4	139	<0,04	0,32	<0,06	0,28	11,7	<0,04
Vegeta Ii	romodoro	fusto	<0,01	<0,04	11,3	64,2	<0,04	<0,01	<0,06	0,74	11,1	<0,04
		radici	0,05	4,86	12,8	484	<0,04	0,91	1,71	26,0	35,6	<0,04
	Interfaccia radici	pomodoro	0,55	35,9	24,5	2194	1,28	1,45	13,0	44,6	115	0,13
0		0-10 cm	0,45	56,4	18,7	2196	1,20	1,60	13,6	45,9	102	0,37
Suolo	Profilo	10-30 cm	0,46	41,2	33,0	2187	1,51	1,59	16,7	50,0	106	0,36
S	гишо	20-25 (+)	0,41	43,7	39,0	2161	1,51	1,48	14,5	50,8	110	0,26
		80-100 cm	0,64	59,5	31,8	1370	1,67	1,33	17,3	50,5	55	0,08
VCA	13 - Microelementi		Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		frutti	97,4	1,20	30,0	154	8,46	3,95	85,4	<0,09	47,2	339
Vegeta li	Pomodoro	foglie	90,9	1,51	31,1	157	9,25	3,03	70,6	<0,09	44,4	323
Veg	romodoro	fusti	110	1,43	32,9	169	10,9	4,79	100	<0,09	58,5	341
		radici	110	1,35	30,8	182	10,2	3,95	130	<0,09	58,5	329
	Interfaccia radici	pomodoro	113	1,83	38,3	328	27,6	2,66	44,8	<0,12	65,7	346
9		0-10 cm	97,4	1,20	30,0	154	8,46	3,95	85,4	<0,12	47,2	339
Suolo	Profilo	20-25 (*)	90,9	1,51	31,1	157	9,25	3,03	70,6	<0,12	44,4	323
S	1101110	10-30 cm	110	1,43	32,9	169	10,9	4,79	100	<0,12	58,5	341
		80-100 cm	110	1,35	30,8	182	10,2	3,95	130	<0,12	58,5	329
(*) Iı	ntercalazione scura											

VC	CA 14					4868]	109.90 ml	N 601783	.75 mE -	- 133 m s	slm	
VCA	14 – Macroelem	enti (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	44,6	34662	93	6625	2621	36,6	1587	4129	13897	2,99
=		foglie	34,3	32752	80	6868	2276	33,4	1324	3251	10864	3,01
문	Cavolo nero	fusti	21,7	5948	36	6327	2054	5,3	2117	3152	1722	2,52
Vegetali	Cavolo nero	fusti	27,0	5434	42	6579	2108	5,5	2188	3540	1901	2,44
>		radici	129,9	8150	159	7687	2789	12,7	1694	5202	3060	5,79
		radici	85,6	5614	121	7643	2021	9,4	1461	3427	2116	3,84
	Interfaccia radici	Cavolo nero	18711	28145	25786	5763	4858	881	587	3569	3208	444
Suolo		0-10 cm	18523	26986	22036	5717	4415	780	525	3090	4399	421
, i	Profilo	10-30 cm	23390	27973	22521	7981	4836	745	763	2947	3493	511
		80-100 cm	21531	29107	21451	6882	4793	747	577	2392	4370	458
VCA	14 - Microeleme	nti (mg kg ¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	<0,01	<0,04	40,7	133,3	<0,04	<0,01	<0,06	0,16	7,6	<0,04
-		foglie	<0,01	<0,04	33,7	140,6	<0,04	<0,01	<0,06	0,09	8,6	<0,04
25	Cavolo nero	fusti	<0,01	<0,04	12,2	87,7	<0,04	<0,01	<0,06	0,47	4,0	<0,04
Vegetali	Cavolo nero	fusti	<0,01	<0,04	14,1	75,2	<0,04	<0,01	<0,06	0,37	4,2	<0,04
>		radici	<0,01	<0,04	11,4	82,9	<0,04	<0,01	<0,06	1,94	9,7	<0,04
		radici	<0,01	<0,04	12,4	78,6	<0,04	<0,01	<0,06	1,39	9,6	<0,04
	Interfaccia radici		4,32	67,9	19,1	2790	0,94	2,23	13,99	40,4	361	2,90
Suolo		0-10 cm	4,17	58,2	22,3	2183	0,80	2,81	11,82	34,1	321	1,39
S	Profilo	10-30 cm	4,48	60,1	28,1	2163	1,03	2,70	11,38	38,6	302	1,79
		80-100 cm	3,30	57,1	24,1	2181	0,96	2,32	12,68	31,7	192	1,23
VCA	14- Microelemei		Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		foglie	0,59	3,82	<0,01	0,88	<0,06	<0,05	56,5	2,83	<0,08	70,3
=		foglie	0,56	3,86	<0,01	1,70	0,56	<0,05	58,3	2,42	<0,08	60,7
Vegetali	Cavolo nero	fusti	0,34	0,14	<0,01	2,46	0,42	<0,05	18,9	1,71	<0,08	30,0
ින	Cavolo nero	fusti	0,35	0,11	<0,01	0,75	<0,06	<0,05	17,0	1,56	<0,08	28,6
>		radici	0,66	0,20	1,09	3,91	0,98	<0,05	20,1	3,48	<0,08	53,4
		radici	0,61	0,16	0,69	2,51	0,85	<0,05	17,9	2,54	<0,08	36,6
	Interfaccia radici		62,3	1,18	29,0	612	24,3	22,25	481,9	1,23	37,3	856
Suolo		0-10 cm	59,1	1,20	25,4	557	22,4	20,12	474,3	0,78	33,4	691
S	Profilo	10-30 cm	66,6	1,03	25,8	479	21,7	18,17	514,4	1,39	41,2	689
		80-100 cm	68,8	1,12	24,4	356	19,0	13,32	445,0	0,56	36,5	538

Tabella 6.5. Segue.

V	CA 15					48671	51.92mN	600498.	17mE – 5	54 m slm		
VC	A 15 – Macroelemei	nti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		frutti	21,6	991	131	6654	865	5,1	606	2650	1054	1,99
Veg	Pomodoro	foglie	795,0	32891	319	6391	2219	20,3	1031	2844	12188	7,38
>	romodoro	fusto	43,9	7567	41	7614	1079	7,3	645	1969	1213	2,01
		radici	1684	13072	1190	7499	1714	29,4	971	1652	1926	28,3
	Interfaccia radici	pomodoro	19342	4867	15537	4986	2243	253	488	734	315	548
Suolo		0-10 cm	22292	2553	18340	5423	1968	240	497	495	217	625
S	Profilo	10-30 cm	16823	2081	17606	3435	1612	239	308	412	193	513
		80-100 cm	21857	1974	18645	4834	2037	167	429	365	139	592
VCA	15 - Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		frutti	<0,01	<0,04	9,6	2,4	<0,04	<0,01	<0,02	18,01	46,0	<0,04
Veg	Pomodoro	foglie	<0,01	<0,04	54,2	61,6	<0,04	<0,01	<0,02	0,61	2484	<0,04
>	romodoro	fusto	<0,01	<0,04	6,4	15,4	<0,04	<0,01	<0,02	0,24	107	<0,04
		radici	<0,01	<0,04	8,9	33,5	<0,04	<0,01	0,19	5,81	60,8	<0,04
	Interfaccia radici	pomodoro	<0,05	7,91	8,88	233	0,63	0,27	5,66	35,6	75	<0,10
- 6		0-10 cm	<0,05	7,79	8,06	203	0,71	0,16	5,58	37,9	47	<0,10
olonS	Profilo	10-30 cm	<0,05	7,37	5,63	178	0,55	0,19	5,35	28,1	45	<0,10
		80-100 cm	<0,05	8,62	7,99	212	0,71	0,23	5,50	29,1	44	<0,10
VCA	15 - Microelementi	(mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		frutti	0,28	<0,03	0,85	0,96	0,75	1,75	2,76	<0,09	<0,08	14,8
Veg	Pomodoro	foglie	1,91	<0,03	0,61	2,12	0,65	0,03	63,4	<0,09	0,24	24,1
>	T OIII OU OI O	fusti	0,33	<0,03	<0,01	1,01	0,51	<0,05	23,9	<0,09	<0,08	23,8
		radici	4,76	0,25	1,66	3,37	0,70	<0,05	50,3	<0,09	2,12	47,7
	Interfaccia radici	pomodoro	31,5	0,87	13,5	36,2	1,82	2,28	25,0	<0,12	29,7	62,5
Suolo		0-10 cm	32,1	0,87	12,6	28,7	2,13	1,55	18,3	<0,12	34,1	49,5
Su	Profilo	10-30 cm	25,9	0,78	12,1	25,3	1,72	1,45	13,8	<0,12	28,2	48,7
		80-100 cm	34,6	1,02	13,3	36,0	2,12	1,69	17,2	<0,12	34,7	54,5

VC	CA 16		p-1			48670	49.14mN	60106	3.22mE -	- 71 m sln	n	
VC.	A 16 - Macroelement	i (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
	Pomodoro	frutti	26,2	1202	61	3202	1494	10,0	1802	3107	1399	2,35
	romodoro	foglie	94,3	35461	160	5437	4184	54,4	2199	1734	9614	2.96
		fusto	37,5	13853	65	3337	1850	12,0	2322	2267	1078	2,09
		radici	1067	17270	858	7513	1520	35,3	1775	1464	1273	16,5
	Interfaccia radici	pomodoro	21673	3745	19363	4749	3331	345	432	1100	331	396
Suolo		0-10 cm	30310	4002	20605	8353	4002	348	819	1177	385	538
,ā	Profilo	10-30 cm	23047	3512	19653	5209	3410	356	448	1121	313	427
**	Control of the contro	80-100 cm	22133	2189	19177	4051	3356	320	355	600	139	434
VC	16 - Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		frutti	<0,01	<0,04	7,9	4,1	<0,04	<0,01	<0,02	0,15	31,4	<0,04
6	n	foglie	<0,01	<0,04	27,4	97,2	<0,04	<0,01	<0,02	<0,02	793	<0,04
Vege	Pomodoro	fusto	<0.01	<0,04	10,0	33,3	<0.04	<0,01	<0,02	<0,02	66,7	<0,04
		radici	<0,01	<0,04	10,6	40,6	<0,04	<0,01	<0,02	3,88	36,8	<0,04
	Interfaccia radici	pomodoro	<0,05	9,88	7,57	266	0,64	0,43	8,05	56,6	195	<0,10
9		0-10 cm	<0,05	10,1	10,74	354	0,95	0,43	7,79	69,1	212	<0,10
Suolo	Profilo	10-30 cm	<0.05	10,2	7,58	271	0,71	0,40	7,57	57,5	201	<0,10
	300000	80-100 cm	<0.05	9,67	5,51	180	0,64	0,26	7,85	33,7	102	<0.10
VC	16 - Microelementi	(mg kg l)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
		frutti	1,55	0,41	<0,01	0,75	0,53	<0,05	2.97	<0,09	<0.08	24,0
90		foglie	0,55	0,60	<0,01	1,02	0,48	0,27	90,2	<0.09	<0.08	17,4
Veg	Pomodoro	fusti	0,33	0.45	< 0.01	1.14	0.38	<0.05	47,5	<0.09	< 0.08	33,6
		radici	2,71	0,96	0,49	4,23	0,61	<0.05	65,9	<0,09	1,07	46,8
	Interfaccia radici	pomodoro	35,8	1,51	17,6	63,3	2,71	2,41	22,9	<0,12	29,7	126
Suolo		0-10 cm	45,0	1,43	18,4	67,8	2,94	2,87	28,6	<0,12	40,3	130
S.	Profilo	10-30 cm	38,4	1,42	17,8	83,0	2,68	2,41	24,5	<0,12	32,0	122
91		80-100 cm	36,4	1,60	19,3	50,3	2,24	1,89	18,1	<0,12	31,6	96

Tabella 6.5. Segue.

VC	CA 17					4867	404.01mN	V 601307	.99 mE –	87 m slm	ı	
VCA	17 – Macroelement	i (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		frutti	9,8	854	45	6750	1128	9,9	987	2435	775	1,93
Veg	D	foglie	84,4	39331	172	7492	3774	47,6	2309	2396	4753	2,88
>	Pomodoro	fusto	16,1	14404	50	6533	2243	11,1	2212	1590	1653	1,38
		radici	864	16575	853	7640	1618	41,8	2336	2470	2147	13,65
	Interfaccia radici	pomodoro	18304	10414	18225	4631	4174	592	544	2454	758	365
Suolo		0-10 cm	21069	17267	17663	6012	4000	527	573	1307	531	406
Sin	Profilo	10-30 cm	19660	4343	19739	4461	3561	605	390	1161	368	387
		80-100 cm	18877	1744	18399	4389	3473	554	342	664	115	349
VCA	17 - Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		frutti	<0,002	<0,04	8,5	1,7	<0,04	<0,01	<0,02	1,93	22,2	<0,04
Veg	Pomodoro	foglie	<0,002	<0,04	49,6	86,6	<0,04	<0,01	<0,02	<0,02	3265	<0,04
>	romodoro	fusto	<0,002	<0,04	10,8	28,7	<0,04	<0,01	<0,02	<0,02	214	<0,04
		radici	<0,002	<0,04	10,3	61,1	<0,04	<0,01	<0,02	12,9	48,2	<0,04
_	Interfaccia radici	pomodoro	0,08	13,81	14,6	1059	0,79	0,68	10,34	41,3	229	<0,01
용		0-10 cm	0,01	11,88	14,4	770	0,87	0,55	9,98	57,5	114	0,07
Suolo	Profilo	10-30 cm	0,09	14,13	11,5	915	0,95	0,60	11,45	32,4	115	0,10
		80-100 cm	<0,05	11,23	11,2	221	0,88	0,39	11,39	26,4	34	<0,01
VCA	17 - Microelementi	(mg kg l)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		frutti	0,39	<0,03	<0,01	0,92	0,51	1,35	1,96	<0,09	<0,08	19,7
Veg	Pomodoro	foglie	0,71	<0,03	0,18	0,97	0,55	2,71	69,2	⊲0,09	<0,08	16,4
>	T OIIIOUOI O	fusti	0,31	<0,03	<0,01	1,22	0,48	<0,05	33,5	<0,09	<0,08	37,9
		radici	3,64	1,31	0,69	5,00	0,74	<0,05	47,2	<0,09	1,06	49,5
	Interfaccia radici	pomodoro	53,7	1,81	24,4	93,0	4,81	3,31	50,3	<0,12	30,1	194
Suolo		0-10 cm	57,5	1,35	22,3	78,7	3,72	2,67	36,4	<0,12	32,6	150
Su	Profilo	10-30 cm	55,9	1,42	23,5	93,5	4,26	3,36	34,0	⊲0,12	31,6	146
		80-100 cm	57,1	1,43	20,5	54,6	2,63	1,48	14,7	<0,12	29,2	82

VC	CA 18					48670	94.43 mN	600148	.03mE -	33 m slr	n	
VC	A 18 – Macroelemen	ti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		frutti	3,9	881	17	3211	369	1,7	426	1108	423	0,86
-	D	foglie	128,0	45231	211	7607	3792	50,3	1614	3132	9300	4,62
Vegetali	Pomodoro	fusto	13,9	9849	35	7077	1430	10,3	1517	2526	1064	2,17
50		radici	1018,3	14932	1189	7681	1914	54,8	1954	1906	1223	24,7
>	D	periderma	113,6	802	105	6968	1175	5,8	217	3937	1151	3,94
	Patata rosa	tubero	9,4	352	25	7606	1112	6,1	163	2959	1097	2,22
		patata	14587	3914	18493	4161	2870	438,4	356	1140	395	420
	Interfaccia radici	pomodoro	17030	3739	18931	5077	3129	448,3	428	1164	395	467
Su		0-10 cm	20594	3414	19327	6574	3327	480,0	595	1006	330	525
olo	Profilo	10-30 cm	13880	3131	18927	3580	2792	445,6	312	1033	326	424
		80-100 cm	19393	1616	21285	5061	3358	364,2	400	507	160	444
VC	18 - Microelementi	i (mg kg l)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
	Pomodoro	frutti	<0,01	<0.04	2,4	3,9	<0,04	<0,01	<0,02	0,96	35,9	<0,04
		foglie	0.01	<0.04	56,4	166.1	<0.04	<0.01	<0.02	<0.02	2514	<0.04
		fusto	<0,01	<0.04	9,4	34.9	<0.04	<0,01	<0.02	0.27	174	<0.04
		radici	0.01	2,11	10,2	66,3	<0.04	<0.01	0.49	14,69	55.1	<0,04
	D	periderma	<0,01	<0,04	5,0	8,6	<0,04	<0,01	<0,02	0,30	14,9	<0,04
	Patata rossa	tubero	<0,01	<0.04	2,2	2,1	<0.04	<0.01	<0,02	<0,02	9,1	<0.04
	Interfaccia radici	patata	0,10	37,1	8,37	807	0,64	0,66	9,65	25,3	104	0,05
	Interfaccia radici	pomodoro	0,10	37,4	9,74	862	0,71	0,65	9,58	27,8	106	0,13
Suolo		0-10 cm	0,08	39,4	11,88	849	0,87	0,66	10,22	26,8	98	<0,10
S	Profilo	10-30 cm	0,14	39,3	77,26	772	0,63	0,66	9,38	22,2	93	0,11
		80-100 cm	0,09	56,4	9,54	555	0,87	0,54	11,04	24,0	36	0,04
VCA	18- Microelementi	(mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
		frutti	0,12	0,18	<0,01	0,49	0,26	0,99	1,99	<0,09	<0.08	6,22
-		foglie	0,72	3,10	<0.01	1,21	0,49	3,66	82,2	<0.09	<0.08	21,3
2	Pomodoro	fusti	0,28	0,52	0.13	1.37	0,55	0,22	23,4	<0.09	<0.08	28.9
Vegetali		radici	3,64	2.37	1.86	7,93	1,09	<0.05	45,2	<0.09	1.18	54,5
>	n	periderma	0,58	0.38	0.57	1,22	0,60	<0.05	2.66	<0.09	<0.08	21,4
	Patata rossa	tubero	0,27	0.26	<0.01	0,85	0,59	<0.05	1,17	<0.09	<0.08	20,0
		patata	35.0	1,20	18,8	104	8,61	1,55	26,6	<0.12	25,9	144
0	Interfaccia radici	pomodoro	39,4	1,27	19,3	105	8,16	1.72	26.1	<0.12	28,7	152
Suolo		0-10 cm	44.1	1,11	22,8	109	8,71	2,03	26,7	<0,12	33,0	149
S	Profilo	10-30 cm	33.5	1,10	18,8	106	8,52	1.42	24,1	<0.12	25,7	145
		80-100 cm	46.7	1.34	22,2	105	8,99	1.36	16.6	<0.12	31,6	129

Tabella 6.5. Segue.

VC	A 19					48660	26.41 ml	N - 59930	4.75 mE -	– 5 m slm	l	
VCA	19 – Macroelement	ti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
et		frutti	9,3	1352	51	6580	1036	8,0	593	2127	981	1,88
egeta Ii	Pomodoro	foglie	132,8	45319	264	5405	3847	74,1	1794	1574	6664	3,34
, e	1 olliodol o	fusto	19,8	17961	48	4549	1867	13,9	1027	1192	1435	1,51
		radici	913,9	24444	814	7349	1738	36,7	1548	1603	1778	17,06
	Interfaccia radici	pomodoro	13622	4559	16063	3953	2701	314	357	937	369	455
Suolo		0-10 cm	26248	11866	20511	8173	4676	391	675	1210	347	562
Sui	Profilo	10-30 cm	25473	10174	19795	7886	4401	364	782	836	572	571
		80-100 cm	33385	9617	29242	7772	6106	4936	584	518	465	587
VCA	19 - Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		frutti	<0,01	<0,04	8,6	39,6	<0,04	<0,01	<0,02	2,40	13,0	<0,04
Veg	Pomodoro	foglie	<0,01	<0,04	67,0	198,7	<0,04	0,29	<0,02	<0,02	3230	<0,04
>	romodoro	fusto	<0,01	<0,04	9,5	54,6	<0,04	<0,01	<0,02	0,22	405	<0,04
		radici	0,02	0,355	11,0	100,1	<0,04	0,21	0,22	14,84	88,9	<0,04
	Interfaccia radici	pomodoro	<0,01	16,93	9,69	546	0,63	0,60	8,66	28,50	239	0,01
Suolo		0-10 cm	<0,05	21,7	13,8	490	1,10	0,55	9,82	57,9	95,1	<0, 10
Su	Profilo	10-30 cm	<0,05	21,3	13,7	454	1,10	0,47	9,33	82,0	52,5	<0,10
		80-100 cm	0,25	53,8	17,7	1923	1,49	0,70	13,9	48,7	36,7	<0,10
VCA	19 - Microelementi	(mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		frutti	0,26	<0,03	<0,01	0,76	0,48	<0,05	2,48	<0,09	<0,08	15,8
Veg	Pomodoro	foglie	0,87	0,63	0,06	2,05	0,47	3,01	77,2	<0,09	<0,08	20,9
>	1 omodoro	fusti	0,32	0,64	<0,01	2,53	0,44	0,32	39,4	<0,09	<0,08	64,4
		radici	3,43	1,53	0,83	5,68	0,73	<0,05	61,5	<0,09	1,02	91,7
	Interfaccia radici	pomodoro	34,4	0,71	16,1	70,8	4,33	1,71	24,3	<0,12	22,7	103
ુ		0-10 cm	57,9	1,71	24,0	80,2	5,2	1,99	26,2	<0,12	36,7	112
Suolo	Profilo	10-30 cm	54,7	2,33	25,7	75,7	5,3	1,92	26,0	<0,12	36,0	114
		80-100 cm	89,1	2,12	33,1	167	10,4	1,78	24,0	<0,12	50,7	160

Tabella 6.5. Segue.

		foglie con										
	Insalata verde	punte rosse	378	9822	404	3897	1648	27,6	1671	5378	2867	9,90
		foglie	102	7393	150	4463	1046	35,7	1804	2850	2100	4,22
	Radicchio	foglie	161	13143	173	5679	1536	30,2	1948	4941	3286	6,90
	Zucca		15,7	901	41,5	6629	1755	8,1	272	3398	1564	3,69
		frutto	106	1302	134	5640	2239	14,6	771	5335	2525	5,66
	Pomodoro	foglie	277	36278	379	7578	2316	60,0	1830	3110	9344	6,39
	Pomodoro	foglie	277	37882	406	7506	2627	65,6	1827	3616	11843	7,22
		fusto	269	27487	360	6890	4387	53,1	1982	2070	4123	7,69
Suo	Profilo	0-10 cm	31654	11575	7118	2,52	590	36,5	733	347	80,9	166
lo		10-20 cm)	28912	6029	6720	2,86	407	44,6	756	239	69,4	136
VCA	20 - Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	<0,01	<0,04	35,0	39,4	<0,04	<0,01	<0,06	1,39	14,0	0,30
	Finocchio	gambi	<0,01	<0,04	21,8	44,9	<0,04	<0,01	<0,06	1,13	8,88	0,51
	Гшоссшо	grumolo	<0,01	<0,04	23,6	47,4	<0,04	<0,01	<0,06	2,35	20,7	0,37
		radice	<0,01	13,0	13,2	2175	0,22	0,28	6,94	58,8	78,4	0,67
		foglie	<0,01	<0,04	7,7	50,5	<0,04	<0,01	<0,06	2,47	2,00	<0,04
	Cavolo nero	stelo	<0,01	<0,04	15,2	185	<0,04	<0,01	<0,06	2,79	3,68	0,27
		radici	<0,01	<0,04	12,9	183	<0,04	<0,01	<0,06	2,61	3,20	0,33
		foglie	<0,01	<0,04	14,4	26,8	<0,04	<0,01	<0,06	0,08	9,81	<0,04
	Rapa	foglie	<0,01	<0,04	15,7	27,3	<0,04	<0,01	<0,06	0,15	10,14	<0,04
=		stelo	<0,01	<0,04	16,3	68,0	<0,04	0,01	<0,06	1,45	7,44	0,03
5		foglie	<0,01	<0,04	33,2	34,5	<0,04	0,14	<0,06	2,32	16,5	0,24
Vegetali	Cardone	stelo	<0,01	<0,04	26,6	37,7	<0,04	0,06	<0,06	1,44	10,8	0,35
>		radici	<0,01	<0,04	14,6	56,7	<0,04	0,07	<0,06	7,33	22,5	0,28
	Insalata verde	foglie con punte rosse	<0,01	<0,04	42,6	158	<0,04	0,36	<0,06	4,85	15,1	0,04
		foglie	<0,01	<0,04	21,3	59,7	<0,04	0,30	<0,06	0,04	10,5	0,37
	Radicchio	foglie	<0,01	<0,04	21,5	137	<0,04	0,99	<0,06	0,30	19,2	0,11
	Zucca		<0,01	<0,04	5,4	4,5	<0,04	<0,01	<0,06	<0,02	9,81	0,30
		frutto	<0,01	<0,04	9,9	43,0	<0,04	0,52	<dl< td=""><td>2,55</td><td>32,6</td><td><0,04</td></dl<>	2,55	32,6	<0,04
	Pomodoro	foglie	<0,01	<0,04	34,2	430	<0,04	1,72	<dl< td=""><td>4,84</td><td>99,3</td><td><0,04</td></dl<>	4,84	99,3	<0,04
	1 omodoro	foglie	<0,01	<0,04	36,8	538	<0,04	2,05	<dl< td=""><td>4,92</td><td>126</td><td>0,22</td></dl<>	4,92	126	0,22
		fusto	<0,01	<0,04	18,3	373	<0,04	1,61	<dl< td=""><td>5,12</td><td>56.3</td><td>0,46</td></dl<>	5,12	56.3	0,46
Suo							-					
1_	Profile	0-10 cm	<0,05	38,6	36,9	2338	1,65	1,02	18,2	105	121	<0,04
lo	Profilo	10-30 cm	0,33	35,7	27,1	2372	1,67	1,10	22,1	105 107	121 118	<0,04 <0,04
	Profilo 20 - Microelementi	10-30 cm (mg kg ⁻¹)	0,33 Li	35,7 Mo	27,1 Ni	2372 Pb	1,67 Sb	1,10 Sn	22,1 Sr	105 107 Tl	121 118 V	<0,04 <0,04 Zn
		10-30 cm (mg kg ⁻¹) foglie	0,33 Li 1,79	35,7 Mo 1,76	27,1 Ni 1,28	2372 Pb 1,86	1,67 Sb 0,63	1,10 Sn <0,05	22,1 Sr 17,5	105 107 T1 <0,09	121 118 V 0,14	<0,04 <0,04 Zn 36,8
	20 - Microelementi	10-30 cm (mg kg ⁻¹) foglie gambi	0,33 Li 1,79 0,30	35,7 Mo 1,76 <dl< td=""><td>27,1 Ni 1,28 <dl< td=""><td>2372 Pb 1,86 0,76</td><td>1,67 Sb 0,63 55,4</td><td>1,10 Sn <0,05 <0,05</td><td>22,1 Sr 17,5 24,9</td><td>105 107 T1 <0,09 <0,09</td><td>121 118 V 0,14 <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4</td></dl<></td></dl<></td></dl<>	27,1 Ni 1,28 <dl< td=""><td>2372 Pb 1,86 0,76</td><td>1,67 Sb 0,63 55,4</td><td>1,10 Sn <0,05 <0,05</td><td>22,1 Sr 17,5 24,9</td><td>105 107 T1 <0,09 <0,09</td><td>121 118 V 0,14 <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4</td></dl<></td></dl<>	2372 Pb 1,86 0,76	1,67 Sb 0,63 55,4	1,10 Sn <0,05 <0,05	22,1 Sr 17,5 24,9	105 107 T1 <0,09 <0,09	121 118 V 0,14 <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4</td></dl<>	<0,04 <0,04 Zn 36,8 27,4
		10-30 cm (mg kg ⁻¹) foglie gambi grumolo	0,33 Li 1,79 0,30 1,16	35,7 Mo 1,76 <dl 0,03</dl 	27,1 Ni 1,28 <dl 1,59</dl 	2372 Pb 1,86 0,76 1,36	1,67 Sb 0,63 55,4 0,63	1,10 Sn <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1	105 107 T1 <0,09 <0,09 <0,09	121 118 V 0,14 <dl <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6</td></dl<></dl 	<0,04 <0,04 Zn 36,8 27,4 29,6
	20 - Microelementi	10-30 cm (mg kg ⁻¹) foglie gambi grumolo radice	0,33 Li 1,79 0,30 1,16 56,1	35,7 Mo 1,76 <dl 0,03 9,47</dl 	27,1 Ni 1,28 <dl 1,59 18,1</dl 	2372 Pb 1,86 0,76 1,36 65,8	1,67 Sb 0,63 55,4 0,63 1,78	1,10 Sn <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3	105 107 T1 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl <dl 27,6</dl </dl 	<0,04 <0,04 Zn 36,8 27,4 29,6 123
	20 - Microelementi Finocchio	10-30 cm (mg kg ⁻¹) foglie gambi grunolo radice foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32	35,7 Mo 1,76 <dl 0,03 9,47 1,56</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04</dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36	1,67 Sb 0,63 55,4 0,63 1,78 0,47	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8	105 107 T1 <0,09 <0,09 <0,09 <0,09 <2,25	121 118 V 0,14 <dl <dl 27,6 <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1</td></dl<></dl </dl 	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1
	20 - Microelementi	10-30 cm (mg kg ⁻¹) foglie gambi grumolo radice foglie steli	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80</dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10	121 118 V 0,14 <dl <dl 27,6 <dl <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2</td></dl<></dl </dl </dl 	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2
	20 - Microelementi Finocchio	10-30 cm (mg kg ⁻¹) foglie gambi grumolo radice foglie steli radici	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl< td=""><td>2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62</td><td>1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53</td><td>1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05</td><td>22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4</td><td>105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30</td><td>121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0</td></dl<></dl </dl </dl </dl </td></dl<></dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30	121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0</td></dl<></dl </dl </dl </dl 	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0
	20 - Microelementi Finocchio Cavolo nero	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl< td=""><td>2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68</td><td>1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65</td><td>1,10 Sn <0,05 <0,05</td><td>22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6</td><td>105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09</td><td>121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <dl <0,08</dl </dl </dl </dl </dl </dl </td><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6</td></dl<></dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09	121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <dl <0,08</dl </dl </dl </dl </dl </dl 	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6
	20 - Microelementi Finocchio	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 0,81	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09	121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <dl <dl <dl <dl< td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 47,6 49,6 49,6</td></dl<></dl </dl </dl </dl </dl </dl </dl </dl 	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 47,6 49,6 49,6
VCA	20 - Microelementi Finocchio Cavolo nero	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie foglie stelo	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,52 0,34 0,37 1,17	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 0,81 1,08	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09 <0,09	121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <dl <0,08 <0,08</dl </dl </dl </dl </dl </dl 	40,04 40,04 7.0<
VCA	20 - Microelementi Finocchio Cavolo nero Rapa	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 0,81 1,08	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <0,08 <0,08 <0,08</dl </dl </dl </dl </dl 	 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9
VCA	20 - Microelementi Finocchio Cavolo nero	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl< td=""><td>27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30</dl </dl </dl </td><td>2372 Pb 1,86 0,76 1,36 65,8 0,36 0,62 0,62 0,68 0,81 1,08 1,29 0,87</td><td>1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75</td><td>1,10 Sn <0,05 <0,05</td><td>22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6</td><td>105 107 T1 <0,09 <0,09</td><td>121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <0,08 <0,08 <0,08 <0,08</dl </dl </dl </dl </dl </td><td> <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 50,9 22,8 </td></dl<></dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,62 0,62 0,68 0,81 1,08 1,29 0,87	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6	105 107 T1 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <0,08 <0,08 <0,08 <0,08</dl </dl </dl </dl </dl 	 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 50,9 22,8
	20 - Microelementi Finocchio Cavolo nero Rapa	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie foglie stelo foglie stelo radici	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02</dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 0,81 1,08	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl <dl 27,6 <dl <dl <dl <0,08 <0,08 <0,08</dl </dl </dl </dl </dl 	 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 50,9 22,8
VCA	20 - Microelementi Finocchio Cavolo nero Rapa	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo foglie stelo radici foglie stelo radici	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94 0,57 0,94 2,38	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,62 0,68 1,08 1,29 0,87 1,44 2,03	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 0,08="" 0,28<="" 27,6="" <0,08="" <dl="" dl="" td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 47,6 49,6 33,9 50,9 22,8 19,7 49,4</td></dl>	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 47,6 49,6 33,9 50,9 22,8 19,7 49,4
VCA	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo foglie stelo foglie stelo foglie stelo radici foglie stelo radici foglie stelo radici foglie con punte rosse foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,52 0,34 1,17 0,94 0,57 0,94 2,38	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04 1,44</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 1,08 1,29 0,87 1,44 2,03	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,78	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 0,08="" 27,6="" <0,08="" <0,08<="" <dl="" dl="" td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6</td></dl>	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6
CA	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde Radicchio	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo foglie stelo radici foglie stelo radici	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94 0,57 0,94 2,38 0,65	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04 1,44 0,60</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55 1,10 0,79</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,62 0,68 0,81 1,08 1,29 0,87 1,44 2,03 0,81 1,88	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,67 0,66	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5 23,0 37,1	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 27,6="" <0,08="" <0,08<="" <dl="" cdl="" td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6 70,3 70,7</td></dl>	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6 70,3 70,7
CA	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo foglie stelo foglie stelo foglie stelo radici foglie foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94 2,38 0,65 0,65 0,99	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04 1,44 0,60 0,28</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55 1,10 0,79 0,10</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,62 0,68 0,81 1,08 1,29 0,87 1,44 2,03 0,81 1,88 0,75	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,67 0,69 0,78	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5 23,0 37,1 4,5	105 107 T1 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 27,6="" <0,08="" <0,08<="" <dl="" td=""><td>40,04 20,04 21 36,8 27,- 29,6 12,3 12,1 12,1 47,6 49,6 49,- 49,- 49,- 44,6 70,2 35,1 35,1 35,1 35,1 35,1 35,1 35,1 35,1</td></dl>	40,04 20,04 21 36,8 27,- 29,6 12,3 12,1 12,1 47,6 49,6 49,- 49,- 49,- 44,6 70,2 35,1 35,1 35,1 35,1 35,1 35,1 35,1 35,1
CA	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde Radicchio	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo radici foglie stelo foglie stelo radici foglie stelo radici foglie foglie foglie stelo radici foglie foglie foglie foglie foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94 2,38 0,65 0,65 0,99	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 <dl 0,48 2,04 1,44 0,60 0,28 0,78</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55 1,10 0,79 0,10 1,33</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 0,81 1,08 1,29 0,87 1,44 2,03 0,81 1,88 0,75 0,56	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,78 0,67 0,78 0,78 0,78 0,78 0,77	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5 23,0 37,1 4,5 6,2	105 107 T1 <0,09 <0,09 <0,09 <0,09 <2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl -0,08="" -0,08<="" -dl="" 27,6="" <dl="" td=""><td><0,04 <0,04 <0,04 Zn 36,8 22,4 123 12,1 23,2 12,1 14,6 49,6 49,4 44,6 70,3 35,3 44,6 43,4 44,6 35,3 43,4 44,6 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 44,6 43,4 44,6 43,4 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 46,</td></dl>	<0,04 <0,04 <0,04 Zn 36,8 22,4 123 12,1 23,2 12,1 14,6 49,6 49,4 44,6 70,3 35,3 44,6 43,4 44,6 35,3 43,4 44,6 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 44,6 43,4 43,4 44,6 43,4 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 43,4 44,6 44,6 43,4 44,6 43,4 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 44,6 46,
CA	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde Radicchio Zucca	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo roglie stelo radici foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 0,37 1,17 0,94 0,57 0,94 2,38 0,65 0,99 0,14 0,29	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04 1,44 0,60 0,28 0,78 2,25</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl 0,19 0,05 0,98 0,30 1,00 0,55 1,10 0,79 0,10 1,33 0,48</dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 1,08 1,29 0,87 1,44 2,03 0,81 1,88 0,75 0,56 1,71	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,67 0,60 0,78	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5 23,0 37,1 4,5 6,2 72,3	105 107 T1 <0,09 <0,09 <0,09 <0,09 2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 20,08="" 27,6="" <0,08="" <0,08<="" <dl="" dl="" td=""><td><0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 49,4 44,6 70,3 35,1 43,4 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 22,8 23,8 24,8 24,8 25,8 26,8 26,9 27,8 28,8 29,9 29,9 20,9 20,9 20,9 20,9 20,9 20,9 20,9 21,8 22,8 24,8 24,8 24,8 24,8 24,8 26,8 26,8 26,8 26,8 26,8 27,8 28,8 29,9 29,9 20,9</td></dl>	<0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 49,4 44,6 70,3 35,1 43,4 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 43,4 22,1 22,8 23,8 24,8 24,8 25,8 26,8 26,9 27,8 28,8 29,9 29,9 20,9 20,9 20,9 20,9 20,9 20,9 20,9 21,8 22,8 24,8 24,8 24,8 24,8 24,8 26,8 26,8 26,8 26,8 26,8 27,8 28,8 29,9 29,9 20,9
VCA	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde Radicchio	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo foglie stelo radici foglie stelo foglie stelo foglie stelo radici foglie stelo foglie stelo radici foglie con punte rosse foglie foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 1,17 0,94 0,57 0,94 2,38 0,65 0,29 0,14 0,29	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04 1,44 0,60 0,28 0,78 2,28</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55 1,10 0,79 0,10 1,33 0,48</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 1,08 1,29 0,87 1,44 2,03 0,81 1,88 0,75 0,56 0,56 1,71 1,86	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,78 0,67 0,60 0,78 0,60 0,78	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5 23,0 37,1 4,5 6,2 72,3 89,3	105 107 T1 <0,09 <0,09 <0,09 <0,09 <2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 0,08="" 27,6="" <0,08="" <0,08<="" <dl="" dl="" td=""><td> <0,04 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6 70,3 35,1 43,4 22,1 33,7 </td></dl>	 <0,04 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6 70,3 35,1 43,4 22,1 33,7
Vegetali Vegetali	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde Radicchio Zucca	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo foglie stelo foglie stelo foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,52 0,34 0,37 1,17 0,94 0,57 0,94 2,38 0,65 0,99 0,14 0,29 1,67 1,42 1,41	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04 1,44 0,60 0,28 0,78 2,26 1,37</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55 1,10 0,79 0,10 0,48 0,92 0,00</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 1,08 1,29 0,87 1,44 2,03 0,81 1,88 0,75 0,56 1,71 1,86 1,67	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,67 0,60 0,78 0,60 0,78 0,71 1,07 0,78	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5 23,0 37,1 4,5 6,2 72,3 89,3 76,5	105 107 T1 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 0,08="" 27,6="" <0,08="" <0,0<="" <dl="" dl="" td=""><td> <0,04 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 49,6 49,9 50,9 22,8 19,7 49,4 44,6 70,3 35,1 43,4 22,1 33,7,6 67,1 </td></dl>	 <0,04 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 49,6 49,9 50,9 22,8 19,7 49,4 44,6 70,3 35,1 43,4 22,1 33,7,6 67,1
VCA	20 - Microelementi Finocchio Cavolo nero Rapa Cardone Insalata verde Radicchio Zucca	10-30 cm (mg kg¹) foglie gambi grumolo radice foglie steli radici foglie stelo foglie stelo foglie stelo radici foglie stelo foglie stelo foglie stelo radici foglie stelo foglie stelo radici foglie con punte rosse foglie foglie	0,33 Li 1,79 0,30 1,16 56,1 0,32 0,52 0,52 0,34 1,17 0,94 0,57 0,94 2,38 0,65 0,29 0,14 0,29	35,7 Mo 1,76 <dl 0,03 9,47 1,56 2,69 2,87 3,88 3,91 1,69 1,02 <dl 0,48 2,04 1,44 0,60 0,28 0,78 2,28</dl </dl 	27,1 Ni 1,28 <dl 1,59 18,1 0,04 0,80 <dl <dl 0,19 0,05 0,98 0,30 1,00 0,55 1,10 0,79 0,10 1,33 0,48</dl </dl </dl 	2372 Pb 1,86 0,76 1,36 65,8 0,36 0,86 0,62 0,68 1,08 1,29 0,87 1,44 2,03 0,81 1,88 0,75 0,56 0,56 1,71 1,86	1,67 Sb 0,63 55,4 0,63 1,78 0,47 0,72 0,53 0,65 0,57 0,58 0,80 0,75 0,81 0,78 0,67 0,60 0,78 0,60 0,78	1,10 Sn <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	22,1 Sr 17,5 24,9 17,1 77,3 9,8 53,9 52,4 26,6 27,9 40,6 20,2 24,6 27,9 32,5 23,0 37,1 4,5 6,2 72,3 89,3	105 107 T1 <0,09 <0,09 <0,09 <0,09 <2,25 0,10 0,30 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09 <0,09	121 118 V 0,14 <dl 0,08="" 27,6="" <0,08="" <0,08<="" <dl="" dl="" td=""><td> <0,04 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6 70,3 35,1 43,4 22,1 33,7 </td></dl>	 <0,04 <0,04 <0,04 Zn 36,8 27,4 29,6 123 12,1 23,2 18,0 47,6 49,6 33,9 50,9 22,8 19,7 49,4 44,6 70,3 35,1 43,4 22,1 33,7

Tabella 6.5. Segue.

6.6. Risultati relativi al monitoraggio su siti interessati da discariche di origine mineraria

La Tabella 6.6 di seguito riportata si riferisce agli 11 siti minerari indagati nelle diverse fasi del monitoraggio condotto da gennaio a settembre 2015. Le schede riportanti le sigle MIN e DIS fanno riferimento a siti interessati da attività mineraria di vario tipo. Ogni scheda riporta le coordinate geografiche del punto baricentrico del sito in esame nel sistema UTM WGS84 (Figura 6.2), e le concentrazioni di EPT espressi in mg/kg determinate nei campioni di suoli e di vegetali.

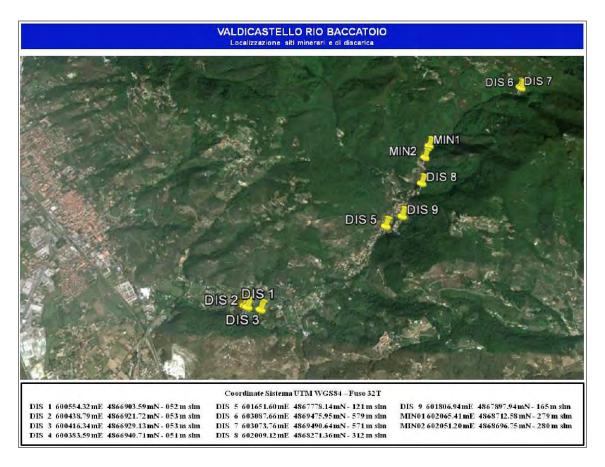


Figura 6.2. Localizzazione dei siti di monitoraggio.

M	IN 1	Zona miner	aria No	rd			486871	2.58 mN	- 602065	5.41 mE	- 279 m	slm
MIN	N 1– Macroelei	menti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
	Graminacee	foglie	160	3384	188	1638	474	71,8	205	565	438	3,10
	Pino	aghifoglie	101	3212	82	4422	962	41,6	1288	1218	1808	1,73
-		foglie	207	7875	470	4320	2417	107	788	1029	2035	3,63
25	Arbusto A	fusto	212	2557	296	2731	674	39,7	235	776	908	3,73
Vegetali		radici	161	863	585	2450	517	52,7	173	624	607	2,50
>		foglie	377	5790	711	3852	1268	168	827	670	1623	5,14
	Arbusto B	fusto	125	1789	267	2393	486	90,9	424	455	745	2,18
		radici	75	634	280	1974	463	37,8	169	562	499	1,43
		O (6-0 cm)	10200	10357	19772	3892	1232	102	444	591	9651	191
0		A (0-4,5 cm)	12237	6407	33048	4310	1216	137	499	787	9743	200
Suolo	Profilo	AB (4,5-8,5 cm)	8896	4208	28311	3788	815	96,4	411	306	9680	187
Š		BC (8,5-12 cm)	5307	556	21479	2257	325	15,3	391	235	9416	73,9
		C (12+ cm)	3790	497	23696	1561	275	19,1	257	173	9572	57,6
MI	N 1- Microelen		Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
	Graminacee	foglie	0,01	0,08	0,00	80,0	<0,02	0,30	<0,06	7,96	3,09	0,10
	Pino	aghifoglie	0,17	0,28	14,20	16,1	<0,02	1,42	<0,06	1,30	4,03	0,16
=		foglie	0,26	1,90	46,00	598	<0,02	0,14	<0,06	1,90	6,29	1,90
- 5	Arbusto A	fusto	0,02	0,38	4,83	143	<0,02	0,09	<0,06	2,19	7,49	0,07
Vegetali		radici	0,55	1,56	1,15	511	<0,02	0,38	<0,06	5,61	6,46	0,10
>		foglie	0,24	2,65	30,56	937	<0,02	0,12	<0,06	2,33	8,51	0,13
	Arbusto B	fusto	0,11	0,50	5,19	297	<0,02	0,10	<0,06	2,00	5,84	0,09
		radici	0,29	0,78	0,75	270	<0,02	0,25	<0,06	3,35	6,06	0,82
		O (6-0 cm)	9,6	109,8	6,3	2519	0,39	4,16	7,4	45,4	48,5	9,10
_0		A (0-4,5 cm)	12,7	129,4	8,2	2525	0,47	10,91	7,1	51,5	66,1	23,9
Suolo	Profilo	AB (4,5-8,5 cm)	14,1	136,4	5,4	2497	0,38	7,33	6,8	44,8	59,8	21,1
S		BC (8,5-12 cm)	16,3	144,0	3,7	2498	0,23	4,51	2,7	27,1	22,9	12,8
		C (12+ cm)	34,3	234,6	2,2	2519	0,16	4,94	2,4	29,7	26,3	17,7
MIN	N 1- Microelen	nenti (mg kg ^{-l})	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
	Graminacee	foglie	1,80	0,01	0,48	5,8	<0,08	0,34	9,7	0,12	0,04	254
	Pino	aghifoglie	2,01	0,03	0,32	1,7	0,84	0,32	4,1	1,18	0,15	66,9
=		foglie	2,13	0,04	1,58	16,8	2,96	0,32	22,6	1.18	0,15	56,2
Vegetali	Arbusto A	fusto	1,92	0,02	0,76	5,8	1,33	0,34	8,9	0,10	0,24	12,0
ğ		radici	1,78	0,08	0,62	52,2	6,74	0,28	12,2	4,10	0,01	36,5
>		foglie	2,54	0,02	2,88	21,7	2,32	0,50	29,5	47,6	0,70	29,8
	Arbusto B	fusto	1,88	0,04	1,64	11,2	1,56	0,44	10,6	19,9	0,06	16,3
		radici	1,27	0,11	0,51	24,0	3,00	0,19	6,8	3,57	0,09	22,1
		O (6-0 cm)	12,1	3,1	12,2	1318	181	2,13	464	28,2	16,8	902
0		A (0-4,5 cm)	12,6	3,7	16,3	1356	229	3,76	571	83,4	21,2	1933
Suolo	Profilo	AB (4,5-8,5 cm)	11.8	2,9	13,8	1312	228	2,89	513	49,9	15,8	1288
S		BC (8,5-12 cm)	4,2	2,6	3,8	1572	234	1,31	545	41,2	7,7	571
		C (12+ cm)	4,2	5,0	5,4	2908	324	0,93	564	49,9	10,9	479

M	IN 2	Zona mine	eraria S	ud			486	6869	6.75 m	N - 602	05]	1.20 mE	– 280 m	slm
МП	N 2- Macroele	menti (mg kg-l)	Al	Ca	Fe	K	Mg	THE R	Mn	Na		P	S	Ti
	Erica	foglie	320	13663	334	4633	1	1421	18,	4 .	339	1256	5536	4,48
-	Erica	fusto	81	4262	104	5648		763	4.	2	361	651	1575	1,58
2	Graminacee	foglie	352	2966	1098	2114		363	8,	5	184	383	1460	6,48
Vegetali	del profilo	radici	855	3642	3024	1541		464	33,	8 .	327	371	1183	11,9
>	Commission	foglie	357	2885	996	1867		334	7,	7	202	354	1443	7,02
	Graminacee	radici	817	3720	2801	1518		454	31,	5 .	397	357	1218	11,2
		Al (0-5/7)	11899	84476	30496	4657		5619	243,	5	656	334	12057	369
Suolo	D 61	AB (5/7-11/18)	11216	35451	30431	3694	- 4	4149	312,	2 .	192	271	11059	230
ě	Profilo	Bw (18-24)	6664	5415	41815	2071	1	1614	73,	1	241	160	11947	154
		IIC (24+)	2779	1941	41879	1049		188	4.	8 8	2.2	106	37339	146
МП	N 2- Microelen	nenti (mg kg-1)	Ag	As	В	Ba	В	e	Cd	Co	-	Cr	Cu	Hg
		foglie	0,06	0.12	11.46	175.4		0.02	0.1	8 <0	.06	2.17	11.0	0.10
-	Erica	fusto	0,03	0.01	5,96	24,2	<	0.02	0,2	9 <0	.06	1.90	9,85	0,08
egetali	Graminacee	foglie	0,23	1.14	0,55	1589		0.02	0.2		.06	6.95	6,61	0,14
50	del profilo	radici	2,33	9,34	1.34	1724	<	0.02	1.9	6 0	.73	32,4	41,79	0,26
>		foglie	0,24	1,31	0,84	1294	<	0,02	0,2	0 <0	.06	6,68	7,47	0,11
	Graminacee	radici	2,65	9,29	1,90	1439	<	0,02	1,8	5 0	.78	31,3	42,2	0,23
		A1 (0-5/7)	9,61	96,1	6,7	2530		0,47	3,7		.01	46,1	95,4	8,04
2	T. 61	AB (5/7-11/18)	10,7	111	6,5	2518		0.47	7,1	4 1	0.0	39,4	74,8	8,71
Suolo	Profilo	Bw (18-24)	13,3	150	3,9	2483	-	0,31	5,3	5 5	.21	32,0	48,6	9.78
	The second	IIC (24+)	24.9	213	<dl< td=""><td>1440</td><td></td><td>0,08</td><td>7,6</td><td>7 3</td><td>92</td><td>17,1</td><td>69,9</td><td>21,1</td></dl<>	1440		0,08	7,6	7 3	92	17,1	69,9	21,1
MI	N 2- Microeler	nenti (mg kg-1)	Li	Mo	Ni	P	b	S	b	Sn		Sr	TI	V
	E-1-	foglie	2,03	0,0)2 1	,62	3,60		1,10	35,9		0,18	0,31	35,8
=	Erica	fusto	1,84	0,0	02 0	,61	2,21		0,81	15,4		0,09	0,02	22,8
Vegetali	Graminacee	foglie	1,99	0,:	52 1	,32	17,1		1,72	34,7		0,59	0,68	78,4
50	del profilo	radici	2,75			,51	173		8,09	36,4		7,32	1,37	136
>	0	foglie	1,52	0.	74 1	,37	16.5		1,19	28,5		0,68	0.72	70,5
	Graminacee	radici	2,31	1.3		.28	165		6.23	31.9		7,28	1.36	141
		Al (0-5/7)	25,2				1009		91,4	575		14,9	25,5	843
9	D	AB (5/7-11/18)	24,5				1184		119	573		18,0	18,5	1380
Suolo	Profile	Bw (18-24)	14,3	3 2	9 1	8,5	1071		160	565		23,7	11,8	1482
-		IIC (24+)												

Tabella 6.6. Concentrazioni di EPT ed altri elementi in suoli e vegetali campionati in siti interessati da attività mineraria.

DI	S 1	Discarica s	ponda d	lestra R	io Bacc	atoio	48	66903.59	mN _ 60	0554.32 1	nE - 52	m slm
DIS	1- Macroel	ementi (mg kg ^{-l})	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
	Alloro	foglie	49,1	5336	188	4641	1220	82,47	152	958	819	2,78
=	Alloro	fusto	22,7	4939	73,0	4056	558	59,32	90	410	274	2,26
Vegetali		foglie	81,1	13763	1290	5807	3620	45,11	342	851	1583	3,25
Š	Edera	fusto	33,0	9583	3160	3615	1363	33,03	704	433	436	2,38
		radici	256	5110	7288	4922	1189	33,10	1111	638	2152	5,60
		A (0-5 cm)	3431	1822	98028	1522	565	126	153	399	3738	91,4
		Bw (5-25 cm)	3686	278	93291	1610	331	143	132	349	3836	94,6
Suolo	Profilo	2C (25-33 cm)	1755	252	94344	877	155	38	102	130	5710	57,0
S	гиши	3C (33-35 cm)	3817	304	80605	1963	315	41	171	106	4422	120
		4C (35-38 cm)	997	402	168275	446	127	37	65	108	4153	66,5
		5C (39+ cm)	1429	373	193772	667	188	46	79	190	5597	72,4
DIS	1- Microele	menti (mg kg 1)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
	Alloro	foglie	0,01	0,02	8,19	232	<0,02	0,09	<0,06	1,01	6,31	0,010
-	Alloro	fusto	0,01	0,07	7,97	122	<0,02	0,33	<0,06	0,27	4,30	0,016
Vegetali		foglie	1,04	1,73	14,6	1822	<0,02	0,05	<0,06	4,58	5,71	0,030
>	Edera	fusto	0,59	0,69	8,49	586	<0,02	0,26	<0,06	3,93	5,63	0,026
		radici	4,15	10,9	7,11	2343	<0,02	0,51	<0,06	41,0	14,2	0,129
		A (0-5 cm)	16,2	165	5,01	2413	0,16	1,81	1,88	44,5	13,5	12,7
		Bw (5-25 cm)	16,0	158	4,34	2415	0,24	0,33	2,02	33,9	12,4	12,9
Suolo	Profilo	2C (25-33 cm)	22,9	196	3,11	2347	0,08	0,34	2,14	52,4	8,5	19,2
S	Tromo	3C (33-35 cm)	21,6	172	6,91	2351	0,23	0,31	4,82	42,4	7,2	15,1
		4C (35-38 cm)	21,2	151	0,83	2421	0,07	0,42	2,18	28,6	6,0	22,1
		5C (39+ cm)	10,2	273	0,72	2435	0,07	0,44	2,65	38,6	8,1	24,8
DIS	1- Microele	menti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
	Alloro	foglie	0,30	0,02	0,07	1,75	1,90	0,42	30,4	0,08	0,04	51,4
Vegetali	Amoro	fusto	0,21	0,01	0,07	0,74	1,45	0,36	32,8	2,24	5,08	48,5
Se Se		foglie	0,42	0,35	0,15	6,02	5,24	0,35	113	0,13	0,34	93,2
Š	Edera	fusto	0,43	0,15	0,05	6,03	2,35	0,37	76,4	0,06	0,04	53,9
		radici	0,81	3,52	3,94	126	17,2	0,12	203	23,9	2,63	45,7
		A (0-5 cm)	6,31	14,3	14,6	249	429	1,31	554	46,0	73,7	288
		Bw (5-25 cm)	6,16	14,0	11,3	209	339	1,34	554	37,7	59,0	297
Suolo	Profilo	2C (25-33 cm)	2,39	12,2	13,2	348	548	1,04	543	64,9	59,3	266
Su	1101110	3C (33-35 cm)	6,59	10,4	11,6	316	429	1,13	543	88,4	69,0	185
	I	4C (35-38 cm)	2,69	15,8	31,2	341	590	1,80	550	55,1	198	465
		5C (39+ cm)	2,87	22,0	34,5	197	958	1,91	560	70,7	183	207

DIS	2 1	Discarica sponda	a destra	Rio B	accatoio		4866921	.72 mN	600438	.79 mE	- 53 m s	lm
DIS 2	- Macroel	ementi (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
**	Graminac	foglie	849	7981	1551	4914	1017	93	1596	1111	1291	12,9
Veg	Grammac	radici	774	5987	11627	4209	907	240	1151	959	2042	11,8
		A (0-3 cm)	23937	38425	23386	6701	6795	560	1370	616	1165	543
Suolo	D., 61.	B (3-11 cm)	28234	30908	28156	7015	5073	639	1250	488	724	588
Sin	Profilo	C (11-45 cm)	4444	1233	156883	1861	563	72	164	192	3947	106
•		C/D (80-100 cm)	2728	8041	129287	1198	307	80	113	199	19945	59,5
DIS 2	- Microele	menti (mg kg l)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
	Kinn Street	foolie	0,15	2,54	4,35	1839	<0,02	0,01	<0,06	6,74	12,4	0,02
Veg	Gramina	radici	2,24	15,24	3,45	2116	<0.02	0,21	<0.06	18,13	12,1	0,10
		A (0-3 cm)	0,21	16,30	13,5	2386	0,94	38,4	10,6	97,6	26,2	0,16
9	D 61	B (3-11 cm)	0,10	17,38	11,6	2359	0.94	30.9	13,3	55,0	38,2	0,57
Suolo	Profile	C (11-45 cm)	14,2	848	5.3	2373	0,23	1,2	2,40	26,4	12,3	30,6
-		C/D (80-100 cm)	7,56	628	3.1	1608	0.08	8,0	2,03	41,1	11,4	15,6
DIS 2	- Microele	menti (mg kg 1)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
	1/2 / 3 /	foolie	2,04	1,34	1,77	10,1	3,36	0,30	54,5	6,8	1,36	40,5
Veg	Gramina	radici	1,88	5,27	6,16	75,5	22,8	0,11	105,3	85,3	5,28	74,8
100	D C1	A (0-3 cm)	46,4	2,05	33,5	49,8	16,2	1,61	137,0	2,15	37,4	93,1
= 5	Profilo	B (3-11 cm)	57,6	1,18	30,1	43,6	13,0	1,80	93,6	0,49	37,8	91,3
		C (11-45 cm)	7,52	23,8	18,5	198	1264	1,71	541,3	193	71.0	168
		C/D (80-100 cm)	3,71	13,2	32.9	167	622	1,35	472,2	94,5	41,4	343

DIS 3 Discarica sp		Discarica sponda destra Rio Baccatoio					4866929.13 mN _ 600416.34 mE - 53 m slm					
		Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti	
Suo	Profilo	(0-7 cm)	3343	519	36736	1269	332	39	135	155	4722	79,5
		(7 – 22 cm)	3387	297	4856	1413	186	5	149	44	4461	45,2
		(80-100 cm)	2905	6271	48184	1265	1070	128	119	173	27177	48,0
DIS 3- Microelementi (mg kg1)		Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg	
Suo	Profilo	(0-7 cm)	8,83	142	4,4	2404	0,16	0,5	2,15	25,1	12,2	7,61
		(7-22 cm)	19,5	45,4	4,9	2408	0,16	0,3	1,35	40,1	2,9	8,29
		(80-100 cm)	11,4	138	3,8	526	0,16	6,3	3,51	38,8	20,9	11,64
DIS 3 - Microelementi (mg kg-1)		Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn	
Suo	Profilo	(0-7 cm)	5,20	6,46	6,94	297	261	0,66	555	32,0	24,0	257
		(7-22 cm)	3,08	4,11	1,33	394	173	0,50	554	28,9	6,55	716
		(80-100 cm)	3,05	6,79	16,4	371	292	0,65	523	74,0	17,2	593

Tabella 6.6. Segue.

.DIS 4 Discarica spo		Discarica sponda destra Rio Baccatoio					4866940.71 mN _ 600383.59 mE - 51 m slm						
		Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti		
Veg	Graminacee	foglie	940	6796	2927	6520	1070	76,9	851	1434	2599	14,8	
		radici	5887	5941	19042	5807	1729	306	804	881	2760	45,2	
	Muschio	fusticino	1192	2847	7109	4064	771	26,6	788	746	2722	14,7	
Suo	Profilo	A (0-3,5 cm)	9494	1393	35564	3782	895	64	359	400	5167	159	
		AB (4,5-9 cm)	4942	312	38220	1994	415	41	186	184	4195	93,8	
		C (9-30 cm)	7076	328	4972	3191	351	21	325	100	5461	89,5	
DIS 4 - Microelementi (mg kg 1)		Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg		
Veg	Graminacee	foglie	0,63	4,22	3,79	2092	<0,02	0,07	<0,06	19,01	13,5	0,05	
		radici	1,53	65,1	5,26	2248	0,14	1,08	5,13	78,1	37,5	0,37	
	Muschio	fusticino	3,39	24,6	1,93	2344	<0,02	0,33	0,48	178,7	11,5	0,16	
	Profilo	A (0-3,5 cm)	22,57	180,2	11,1	2374	0,47	1,41	2,65	41,1	24,6	9,57	
Suo		AB (4,5-9 cm)	8,10	144,5	6,0	2424	0,32	0,32	1,84	50,4	11,6	5,29	
		C (9-30 cm)	25,30	41,0	8,6	2403	0,47	0,33	1,39	22,9	10,8	4,11	
DIS 4 - Microelementi (mg kg 1)			Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn	
Veg	Graminacee	foglie	3,25	2,48	4.16	75.5	22.8	0.03	105	85,3	5.28	74.8	
		radici	8.92	9,58	7.83	103	18.9	0,23	225	52,0	16.8	154	
	Muschio	fusticino	2,32	8,58	5,84	129	24.9	0,17	263	13,6	4.93	60,9	
Suo	Profilo	A (0-3,5 cm)	13,5	8,33	8,48	818	368	1,54	545	78,9	31,4	233	
		AB (4,5-9 cm)	6,60	7,71	6,77	252	257	0,87	561	43,7	28,6	206	
		C (9-30 cm)	5,67	2,84	1,11	1135	154	0,88	549	74,1	14,5	143	

DI	S 5	Discarica				4867778	3.14 mN	601651.	60 mE – 1	21 m slm	1
DIS:	5 – Macroelem	enti (mg kg 1)	AI	Ca	Fe	K	Mg	Mn	Na	P	S
**	Graminacee	foglie	1032	5611	4304	8127	1122	60,8	828	1757	3909
Veg	Grammacee	radici	11001	5896	26456	7406	2551	372,0	858	803	3480
100		A (0-2/4)	21600	13796	70713	5700	4139	628	480	851	6646
Suolo	D	Bw (2/4-8)	28255	18362	70677	7907	5429	691	583	677	6822
ě	Profilo	Bs (8-9 cm)	20764	4368	96102	7080	3182	434	543	677	7430
		BC (9-11cm)	14766	3547	76875	4922	2117	196	535	523	8672
DIS	5- Microeleme	nti (mg kg-l)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu
1/201	The second second	foglie	1,10	5,91	3,23	2344	<0,02	0,07	<0,06	31,3	14,6
Veg	Graminacee	radici	1,79	66,3	7,06	2380	0,14	1,08	5,13	138	62,9
		A (0-2/4)	8,36	142	18,4	2389	1,02	13,8	11,0	53,8	56,1
Suolo	D	Bw (2/4-8)	6,91	129	23,6	2414	1,27	18,4	12,9	48,2	71,1
ě	Profilo	Bs (8-9 cm)	8,75	205	18,9	2434	0,72	4,4	7,31	39.1	47,3
	37	BC (9-11cm)	12,97	175	13,8	2367	0,55	3,5	5,61	34,3	42,2
DIS:	5- Microeleme	nti (mg kg ¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V
57/	The second second	foglie	4,45	3,61	3,65	33,1	7.31	0,36	132	2,5	2,45
Veg	Graminacee	radici	45.9	15.9	23,4	130	15,1	0.23	344	18,8	28,4
	11	A (0-2/4)	73,5	9.15	37,5	264	259	2,69	557	23,3	59,2
9	D 61	Bw (2/4-8)	93,4	8,71	40,1	227	239	4.39	559	22,0	69.9
Suolo	Profilo	Bs (8-9 cm)	71,8	9.94	24,5	242	291	3,59	561	28,2	61,8
		BC (9-11cm)	50,1	8,83	19.1	402	239	2,45	552	28.1	45,2

Tabella 6.6. Segue.

DIS	6- Macroeleme	enti (mg kg-l)	Al	Ca	Fe	K	Mg	Mn	Na	P	S
	7	foglie	358	4745	5649	7412	1791	400	2229	1027	198
d 2	Graminacee	radici	699	3992	21703	3504	798	387	705	808	279
	Edera	foglie	93	16144	886	6291	3917	93	334	983	136
		fusto	76	10685	1128	4946	1357	59	622	550	57
		radici	1820	7191	31051	5198	2397	699	462	1005	301
		foglie	414	12133	4624	3878	4941	180	672	793	156
	Rovo	fusto	203	7471	1453	2636	2858	101	741	561	58
	3.30	radici	97	6899	1921	2880	1250	96	1123	319	73
	1	foglie	174	5118	1408	7153	2926	73	1443	740	123
	Felce	fusto	143	3115	698	8379	1320	45	637	454	58
		radici	437	6985	12285	5050	1458	231	489	522	160
	Muschio	fusticino	898	7339	4342	5052	2145	350	969	1104	158
		O (6-0 cm)	688	14986	9037	1196	1682	366	383	723	212
Suolo	Profilo	(0-4 cm)	6848	2514	98244	2729	1421	1117	186	854	669
Su	гтошо	BC (4-7 cm)	5951	860	178148	2356	1232	1372	162	1038	640
		2C/D (7-30 cm)	5729	62711	19882	3788	42986	1996	236	77	1241
DIS	6 - Microelem	enti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu
	Constitution	foglie	0,38	16,2	2,95	2407	<0,02	0,01	<0,06	5,38	12
	Graminacee	radici	2,41	125	2,54	2393	<0,02	0,21	1,23	29,5	11
		foglie	0,55	0.89	13.1	1048	< 0.02	0.02	< 0.06	3,37	8,
	Edera	fusto	0,32	0,86	8,81	768	<0.02	0.16	<0.06	5,77	6,8
		radici	2,71	145	6,41	2365	<0,02	0,03	3,52	172	31
2		foglie	0,12	14,5	18,6	2417	<0.02	0,02	<0.06	14,20	11
Vegetali	Rovo	fusto	0.01	3,41	8,50	1225	<0.02	0.02	<0.06	5,72	7.0
>	210.0	radici	0.02	4,40	7,00	1395	<0.02	0.01	<0.06	1.08	4,2
		foglie	0.01	3,04	9,23	620	<0.02	0.02	<0.06	4,32	7.1
	Felce	fusto	0.01	<0.05	6,18	417	<0,02	0,02	<0.06	4,66	8,0
	reice	radici	2,35	41,3	4,83	2429	<0,02	0,04	0,50	5,85	14
	Muschio	fusticino	0.07	10,6	4,52	2423	<0,02	0,01	0,24	21,7	10
	Muscino					2399	0,11				9,8
0		O (6-0 cm)	0,36	32,1	13,5			0,06	0,11	4,38	
Suolo	Profile	(0-4 cm)	7,27	285	13,5	2442	0,80	2,51	6,88	31,3	16
S	STATE OF	BC (4-7 cm)	8,14	581	6,8	2371	0,54	0,92	5,96	19,4	21
-		2C/D (7-30 cm)	2,12	108	12,7	2373	2,20	62,7	2,72	31,4	5,2
112	6 - Microeleme		Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V
	Graminacee	foglie	1,21	2,00	4,48	43,2	14,5	0,37	68,1	38,7	3,-
	17787	radici	1,72	9,20	10,6	141	42,2	0,15	156	164	9,
		foglie	0,39	0,27	0,10	3,68	3,57	0,38	85,1	<0,25	0,2
	Edera	fusto	0,41	0,39	0,48	5,42	3,85	0,31	70,5	0,45	0,1
=		radici	6,42	23,8	27,3	230	47,9	1,79	319	124	31,0
Vegetali		foglie	1,27	1,81	2,86	26,2	11,3	0,32	130	10,2	3,
8	Rovo	fusto	0,58	0,43	0,66	9,7	5,19	0,28	57,9	14,0	0,
		radici	0,45	0,44	2,59	28,8	6,65	0,31	56,5	77,5	0,
	5.00	foglie	0,63	0,01	1,90	9,9	5,22	0,34	35,9	33,5	0,
	Felce	fusto	0,40	0,01	0,50	6,4	3,16	0,34	24,4	48,5	0,
		radici	1,53	4,43	24,8	109	55,8	0,11	127	138,0	15,
	Muschio	fusticino	1,65	1,71	3,57	22,4	7,41	0,32	107	10,9	4,
		O (6-0 cm)	1,66	3,16	5,10	57,6	20,2	0,29	165	24,6	6,
Suolo	Profilo	(0-4 cm)	15,3	13,2	39,1	410	287	1,59	563	185	68
3	LUIIO	BC (4-7 cm)	21,0	35,9	53,6	862	549	1,87	529	437	1
-		2C/D (7-30 cm)	14,4	6,68	16,6	65,5	111	0.49	281	44.9	1

Tabella 6.6. Segue.

DI	S7 Ze	ona mineraria	discarica	recen	te	4	1869490.	64 mN_	603073	.76 mE	- 571 m	slm
DIS	7 - Macroele	menti (mg kg-1)	AI	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	105	18524	481	6774	4215	140,2	327	1115	1138	3,62
=	Edera	fusto	119	11788	1940	6276	1351	85,2	541	667	717	3,68
e		radici	542	10747	24554	5753	2292	394,4	1019	701	3271	9,96
Vegetali	Muschio	fusticino	473	5158	6339	2805	1449	77,0	489	497	1893	8,34
	Lichene	tallo	804	3533	31880	1962	648	370,3	569	395	3421	14,6
		Oi (3-0)	316	17308	1261	1151	1596	193,4	481	572	929	6,34
Suolo	Profilo	A (0-2)	1719	4859	214443	587	1892	1672	104	441	5495	48,0
100	Promo	B (2-8)	2248	41009	177366	1120	23659	1554	217	978	8281	82,1
		C/D (8-30 cm)	3911	1719	194323	1446	1026	110	109	522	4689	95,2
DIS	7 - Microelen	nenti (mg kg 1)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	0.01	0,02	11,54	274	<0.02	0,015	<0.06	2,15	10,6	0,03
	Edera	fusto	0.04	1,68	9,13	949	<0.02	0.015	<0.06	7,60	8,0	0,06
Vegetali		radici	1,47	49,9	6,86	2376	<0.02	0,025	3,46	58,6	59,0	0,36
e e	Muschio	fusticino	0.26	8,88	2,49	2329	<0.02	0.010	0.17	12,5	8,2	0,11
>	Lichene	tallo	0,52	61,2	1,89	2398	<0,02	0,089	8,77	53,0	146	0,17
		Oi (3-0)	0,66	1,75	11,91	1663	<0,02	0,02	<0,06	1,33	8,2	0,04
9	Profilo	A (0-2)	3,36	249	1,83	2402	0,05	4,91	43.9	239	524	5,31
Suolo	7	B (2-8)	5,24	343	6,91	2390	0,16	41,0	15,5	57,5	107	12,4
		C/D (8-30 cm)	18,7	474	7,44	2379	0,08	1,74	2,68	14,9	62,8	56,1
DIS	7 - Microelen	nenti (mg kg-l)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
		foglie	0,37	0,06	0,03	1,34	1,90	0,42	57,3	0,21	0,04	76,7
	Edera	fusto	0,38	0,60	0,74	4,80	5,36	0,25	64,6	0,28	0,23	40,8
Vegetali		radici	0,99	14,7	13,2	41,01	41,6	2,06	322	60,7	7,40	53,4
age .	Muschio	fusticino	0,73	4,90	2,28	11,38	12,9	0,27	151	0,91	3,81	20,2
Ve	Lichene	tallo	1,24	16,0	40,5	42,82	21,7	7,68	209	5,1	5,28	60,1
		Oi (3-0)	0,60	0,54	2,76	5,74	5,67	0,48	76,1	0,51	0,85	28,3
90	D.,, 61-	A (0-2)	1,73	22,1	129	104,1	232	58,9	535	24,0	13,2	132
Suolo	Profilo	B (2-8)	3,23	62,4	60,6	129,0	553	14,7	541	81,9	78,9	288
-		C/D (8-30 cm)	4,43	39,3	9,56	157,0	1469	2,71	482	71,7	42,0	257

DI	S 8	Discarica Pari	gi (prof	ilo alto)		486827	1.36 mN	_ 60200	9.12 mE	– 312 m	slm
DIS	8 – Macroeler	nenti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	279	19250	497	6643	4568	726	647	821	1491	6,03
=	Edera	fusto	102	8896	187	4178	802	158	1088	431	489	2,95
Vegetali		radici	307	8682	553	4680	1373	173	1192	574	626	6,25
Ve	Castagno	foglie	86,2	6067	116	6571	1894	228	1119	1886	839	3,94
	Castagno	rami	85,8	13625	103	2534	1100	120	645	441	359	2,60
		Oe (15-0)	6267	5501	12695	1709	1485	394	272	730	3912	164
Suolo	Profilo	A (0-15)	37218	438	71434	12327	6361	133	1723	788	8850	789
S	гишо	B (15-45)	38766	480	63845	11392	6883	172	695	507	1733	914
		C/D (45-100 cm)	33121	507	46497	9076	6425	597	473	330	868	802
DIS	8 - Microelem	ienti (mg kg ¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	0,32	<0,04	19,2	260	<0,04	8,99	<0,06	3,09	5,86	0,55
=	Edera	fusto	<0,01	<0,04	2,82	214	<0,04	6,67	<0,06	2,33	5,54	0,62
Vegetali		radici	0,40	0,36	7,60	333	<0,04	5,52	<0,06	3,09	6,40	0,60
Z e	Castagno	foglie	<0,01	<0,04	5,06	56	<0,04	<0,01	<0,06	0,70	6,88	0,44
	Castagno	rami	<0,01	<0,04	1,37	108	<0,04	<0,01	<0,06	1,61	7,15	0,58
		Oe (15-0)	2,91	18,0	2,24	2578	0,24	1,31	3,19	19,2	24,0	1,01
용	Profilo	A (0-15)	3,42	231	36,4	2579	1,26	0,71	7,74	62,3	31,9	<0,10
Suolo	гишо	B (15-45)	<0,05	75,6	38,9	524	1,34	0,31	9,57	69,1	30,9	<0,10
		C/D (45-100 cm)	<0,05	43,5	27,3	232	1,27	0,54	12,3	65,5	24,8	<0,10
DIS	8- Microelem	enti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		foglie	1,40	<0,03	1,15	10,10	1,66	<0,05	46,4	<0,09	<0,08	220
Vegetali	Edera	fusto	0,52	<0,03	1,16	14,20	1,14	<0,05	31,5	<0,09	<0,08	61,1
. ge		radici	1,50	<0,03	1,15	16,20	3,16	<0,05	33,1	0,31	<0,08	73,1
Š	Costomo	foglie	0,35	<0,03	1,39	1,27	<0,09	<0,05	9,83	<0,09	<0,08	31,0
	Castagno	rami	0,29	<0,03	0,29	1,87	<0,09	<0,05	28,9	<0,09	<0,08	28,4
		Oe (15-0)	15,2	1,36	13,1	221	22,4	2,00	142	3,37	15,7	144
8	Profilo	A (0-15)	125	3,08	27,6	503	83,0	2,90	294	13,4	84,6	233
Suolo	Fromo	B (15-45)	127	2,06	32,9	99,4	11,7	2,89	27,3	<dl< td=""><td>92,6</td><td>214</td></dl<>	92,6	214
		C/D (45-100 cm)	121	2,15	33,6	88,8	5,41	2,29	19,7	<dl< td=""><td>81,2</td><td>175</td></dl<>	81,2	175

Tabella 6.6. Segue.

DI	S 8bis	Discarica Pari	gi (profil	o basso)	486	8271.12	mN_60	2009.02	mE - 31	0 m slm	
DIS	Sbis - Macroel	ementi (mg kg-1)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
**	Constitution	foglie+stelo	85,4	4267	534	7460	3753	88,5	2292	1383	1636	3,38
Veg	Graminacee	radici	548	4656	8534	5312	1668	148	909	634	3628	12,5
		Oi (0-2 cm)	1863	9249	2568	3170	1281	74,9	246	733	1107	28,1
Suolo	D. Cl.	A (0-3,5)	32441	5394	40787	9291	5685	691	632	795	3890	611
20	Profilo	AB (3,5-6)	40236	3449	42992	12047	6913	552	898	551	4874	742
42		C (6-20)	28731	1652	39904	5634	5004	140	303	436	2514	483
DIS	8bis - Microele	ementi (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
200		foglie+stelo	<0,01	<0,04	<dl< td=""><td>908</td><td><0,04</td><td><0,01</td><td><0,06</td><td>1,91</td><td>10,4</td><td>0,48</td></dl<>	908	<0,04	<0,01	<0,06	1,91	10,4	0,48
Veg	Graminacee	radici	<0,01	7.91	<dl< td=""><td>2265</td><td><0,04</td><td><0,01</td><td>1,23</td><td>59,1</td><td>30,8</td><td>0,93</td></dl<>	2265	<0,04	<0,01	1,23	59,1	30,8	0,93
		Oi (0-2 cm)	0,39	3,89	<dl< td=""><td>769</td><td><0.04</td><td>0,58</td><td>0,26</td><td>8,46</td><td>11,0</td><td>0,67</td></dl<>	769	<0.04	0,58	0,26	8,46	11,0	0,67
Suolo	D CI	A (0-3,5)	7,87	112	24,9	2530	1,57	5,25	14,6	56,5	58,7	1,80
,ă	Profilo	AB (3,5-6)	8.98	120	35,5	2540	1,97	5,08	14,3	89,0	55,2	110
41		C (6-20)	3,31	97,1	9,82	2594	1,44	1,39	10,3	48,8	40,9	1,11
DIS	8bis - Microele	menti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	TI	V	Zn
**		foglie+stelo	0,43	2,51	0,99	1,36	1,17	<0.05	33,2	<0,09	0,28	104
Veg	Graminacee	radici	1,40	12.5	9,01	10,20	13.0	< 0.05	389	0.7	8,85	179
1		Oi (0-2 cm)	7,66	<0.01	2,31	34,3	2,86	< 0.05	36.1	0.36	3,31	124
9	D 61	A (0-3,5)	113	2,68	39,5	671	66,69	2,96	209,4	20,2	63.7	1022
in a	Profile	AB (3,5-6)	125	3,15	39,2	725	72,44	2,99	339,4	21,3	79,5	1056
32		C (6-20)	113	2,71	38,9	400	49,48	1,72	124,5	15,6	62,1	456

DIS	S 9	Discarica				486	7897.94	mN _ 60	1806.94	mE – 10	65 m slm	l
DIS 9	– Macroelen	nenti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
		foglie	191	12362	2023	7079	2866	167	262	1362	2465	6,43
Veg	Edera	fusto	162	11076	1025	7460	1709	76,3	582	1551	1036	5,25
_		radici	447	7515	6091	6770	1181	127	530	1102	3203	12,92
		Oi (2-0 cm)	207	8425	1296	2110	1370	75,3	220	541	992	5,32
Suo	Profilo	A (0-5/8 cm)	3590	8102	173312	1652	2796	555	46,0	1652	4504	410
		AB (5/8-30 cm)	4568	2320	168593	2280	1251	552	86,0	941	4807	371
DIS 9	- Microelem	enti (mg kg ¹)	Ag	As	В	Ba	Be	Cd	Co	Cr	Cu	Hg
		foglie	<0,01	<0,04	21,3	2253	<0,04	<0,01	<0,06	2,03	8,11	0,50
Veg	Edera	fusto	<0,01	<0,04	20,3	1839	<0,04	<0,01	<0,06	7,29	9,34	0,47
		radici	<0,01	2,28	6,44	2268	<0,04	<0,01	1,20	9,43	14,0	0,59
		Oi (2-0 cm)	<0,01	<0,04	0,38	2153	<0,04	<0,01	<0,06	6,81	8,58	0,58
Suo	Profilo	A (0-5/8 cm)	<0,05	63,0	0,08	2560	1,51	0,08	10,7	33,4	30,3	0,45
		AB (5/8-30 cm)	0,50	54,5	0,08	2557	1,67	0,10	9,88	40,7	33,5	0,82
DIS 9	- Microelem	enti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Sn	Sr	Tl	V	Zn
		foglie	0,52	1,44	2,17	2,75	2,42	<0,05	124	<0,09	2,08	123
Veg	Edera	fusto	0,52	<0,03	1,43	2,14	2,04	<0,05	84,9	<0,09	1,00	69,7
		radici	1,21	3,38	6,59	6,28	7,20	<0,05	293,0	<0,09	7,78	82,1
		Oi (2-0 cm)	0,58	0,71	1,13	2,32	1,84	<0,05	85,1	<0,09	1,36	57,1
Suo	Profilo	A (0-5/8 cm)	9,40	17,08	74,2	40,0	111	3,13	639	<0,12	284	305
		AB (5/8-30 cm)	9,60	25,99	71,2	50,5	124	3,00	637	0,53	276	289

Tabella 6.6. Segue.

Figura 6.3. Rappresentazione di alcuni profili pedologici di siti interessati da discariche di origine mineraria.

6.7. Considerazioni sul grado di contaminazione dei suoli e del trasferimento di EPT in colture orticole

6.7.1. Lo stato di fatto nei suoli

In Tabella 6.7 vengono segnalati per ogni sito ad uso verde pubblico, privato e residenziale gli elementi presenti negli orizzonti superficiali dei suoli che superano le soglie di concentrazione limite in riferimento al D.Lgs. 152/2006.

Sito	As	Cd	Cr	Cu	Hg	Pb	Sb	Sn	TI	Zn
3110	(20)	(2)	(150)	(120)	(1)	(100)	(10)	(1)	(1)	(150)
VCA 1										
VCA 2										
VCA 3										
VCA 4										
VCA 5										

VCA 6					
VCA 7					
VCA 8					
VCA 9					
VCA 10					
VCA 11					
VCA 12					
VCA 13					
VCA 14					
VCA 15					
VCA 16					
VCA 17					
VCA 18					
VCA 19					
VCA 20					

Tabella 6.7. Siti ad uso verde pubblico, privato e residenziale in cui si ha il superamento della concentrazione soglia di contaminazione da parte di EPT presenti nei primi 30 cm di suolo (caselle grigie). Le caselle nere indicano per il sito di riferimento il superamento della soglia di concentrazione di un determinato elemento previsto dalla normativa per zone ad uso commerciale e industriale. Tra parentesi i valori soglia espressi in mg/kg relativi a 10 elementi previsti dal D.Lgs. 152/2006

Le Figure 6.4 (a, b) mostrano la distribuzione delle concentrazioni di alcuni EPT (As, Ba, Cd, Cr, Cu, Pb, Tl, Zn) nei campioni di suolo prelevati a diverse profondità nei 20 siti monitorati. Si evidenzia come le concentrazioni di alcuni EPT nei suoli superino spesso i limiti previsti dal D.Lgs. 152/2006 (Figure 6.4 a, b). Nello specifico, in tutti i siti lo Sn supera sempre tale limite (1 mg/kg); è comunque acclarato che la concentrazione media di tale elemento nella gran parte dei suoli italiani è superiore ai 2 mg/kg, di conseguenza è plausibile che in tutti i siti indagati la concentrazione di tale elemento sia superiore al limite di 1 mg/kg previsto dal D.Lgs. 152/2006.

As e Zn superano il limite (rispettivamente 20 mg/kg e 150 mg/kg) in 11 siti, Cu (120 mg/kg) in 9 siti; Pb (100 mg/kg) in 6 siti; Sb (10 mg/kg) in 5 siti; Cd (2 mg/kg) in 4 siti; Tl (1 mg/kg) in 2 siti. Dal punto di vista normativo non si hanno limiti di legge per Mo e Ba, ma per quest'ultimo sarà necessario porre una dovuta attenzione dato che la concentrazione nella maggior parte dei siti indagati è superiore ai 1000 mg/kg.

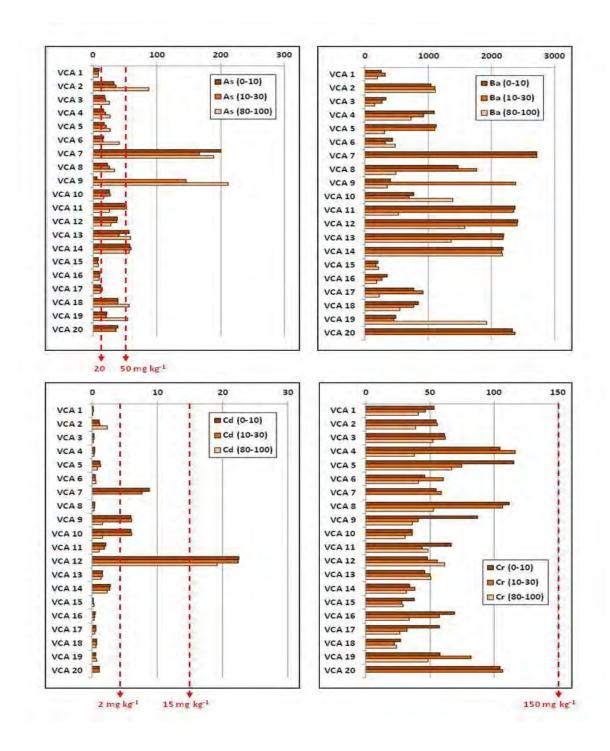


Figura 6.4 a. Rappresentazione delle concentrazioni di As, Cd, Ba e Cr alle diverse profondità dei suoli monitorati (in rosso tratteggiato vengono indicate le concentrazioni limite previste dal D.Lgs. 152/2006). Valori espressi in mg/kg.

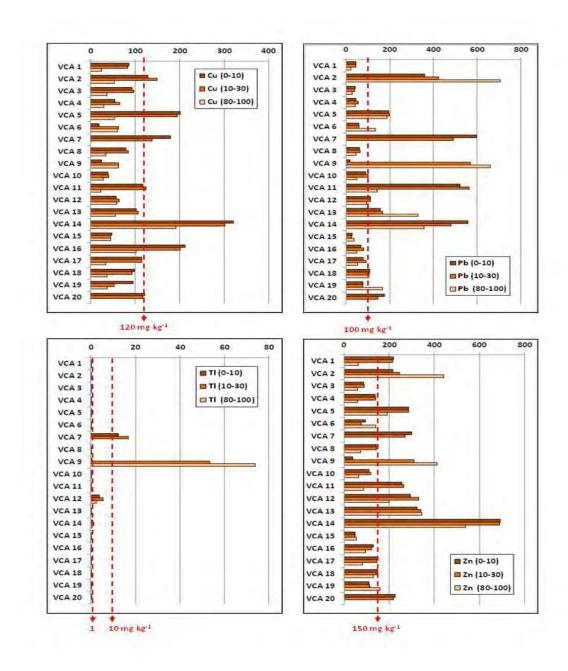


Figura 6.4 b. Rappresentazione delle concentrazioni di Cu, Pb, Tl e Zn alle diverse profondità dei suoli monitorati (in rosso tratteggiato vengono indicate le concentrazioni limite previste dal D. Lgs., 152/2006). Valori espressi in mg/kg.

6.7.2. Lo stato di fatto nei vegetali

In alcuni siti dell'area di indagine le piante coltivate, ed in particolare le Brassicacee (cavolo nero, rape, ecc.), risentono delle elevate concentrazioni di EPT nel suolo tanto da assimilarli nei vari organi (radici, fusti, foglie, frutti). In Tabella 6.8 vengono riportati i valori di concentrazione di 12 EPT determinati nelle parti eduli di alcune colture orticole (foglie per le Brassicacee, frutti per pomodoro

e peperoncino, tuberi per le patate) e nei rispettivi suoli a contatto con gli apparati radicali (rizosfera).

Il trasferimento dal suolo agli organi eduli delle piante è particolarmente significativo per Sb, Ba, Mo, Pb e Zn, e talvolta per As e Tl. As, Ba, Cr, Cu e Pb tendono ad accumularsi di preferenza negli apparati radicali con limitato trasferimento negli altri organi (fusti e foglie); al contrario di Cd, Sn, Zn che evidenziano un significativo trasferimento negli apparati fogliari. Quantitativamente Cd e Sn presentano concentrazioni molto basse. Comportamento simile a Cd e Sn si ha per il Tl la cui concentrazione negli apparati fogliari supera raramente i 0.27 mg/kg con concentrazione dell'elemento nella sostanza fresca inferiore a 0.05 mg/kg.

Nello specifico le concentrazioni di Ba negli apparati fogliari del cavolo nero variano da un minimo di 13 mg/kg ad un massimo di 133 mg/kg, nei frutti del pomodoro e del peperoncino da 2 a 4.5 mg/kg e nei tuberi delle patate da 1.5 a 4 mg/kg.

Le concentrazioni di Tl negli apparati fogliari delle Brassicacee variano da 0.10 a 0.29 mg/kg tranne nel caso dei siti VCA14 e VCA20, dove sono state riscontrate concentrazioni di 2.8 e 2.25 mg/kg rispettivamente; nei frutti dei pomodori e peperoncino e dei tuberi delle patate le concentrazioni sono risultate inferiori alla sensibilità strumentale (<0.09 mg/kg).

La valutazione circa il rischio di tossicità dovuto all'ingestione di prodotti vegetali che hanno adsorbito aliquote significative di EPT trova scarso riscontro nella legislazione comunitaria e del nostro Paese. Come già accennato nel paragrafo 6.2, solamente il Regolamento CEE n. 1881/2006 del 19/12/2006 fornisce indicazioni circa i tenori massimi di As, Cd e Pb presenti in prodotti orticoli. Nel caso specifico delle Brassicacee tali valori massimi (riferiti alla sostanza fresca) sono rappresentati da 0.20 mg/kg per il Cd e 0.30 mg/kg per il Pb.

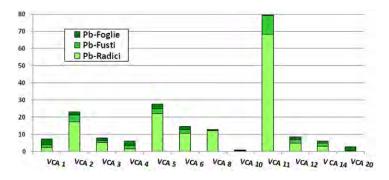


Figura 6.5. Rappresentazione delle concentrazioni di Pb nei diversi apparati (radice, fusto, foglia) di cavolo nero prelevati in 12 siti ad uso verde pubblico, privato e residenziale del territorio in esame. Valori espressi in mg/kg di sostanza secca.

Cavolo nero Suolo (rizosfera) 10,4 267 0,41 64,2 115 2,71 25,6 59,3 2,73 2,19 0,12 236	Si to	Vegetale	Organo/ Interfaccia	As	Ba	Cd	Cr	Cu	Мо	Ni	Pb	Sb	Sn	П	Zn
Pomodoro Foundation Found				0,40	13,1	0,02	4,92	8,74	3,78	1,44	3,46	0,91	0,18	0,10	64,1
Pomodoro Suolo (rizostera) 10,8 234 0,36 49,6 141 1,66 22,2 2,20 2,45 2,34 0,12 147		Cavolo nero	Suolo (rizosfera)	10,4	267	0,41	64,2	115	2,71	25,6	59,3	2,73	2,19	<0,12	236
Variable	8		frutti	<0,04	2,51	<0,01	1,71	11,6	<0,03	1,50	1,01	0,61	1,31	<0,09	22,9
Suolo (rizosfera) 47,7 1411 1,33 61,1 172 2,00 27,4 534 22,5 2,48 0,12 283 Fogile 1,27 62,5 0,52 4,54 15,4 8,01 0,67 14,4 1,30 0,25 0,17 68,3 Suolo (rizosfera). 58,7 1431 1,47 65,2 187 2,30 28,7 549 24,2 2,03 0,012 306 Furtiti -0,04 10,3 -0,01 0,36 13,0 -0,03 -0,01 1,18 0,62 -0,09 20,4 Suolo (rizosfera). 42,2 1299 1,34 33,2 204 1,74 24,7 454 18,9 1,65 -0,12 259 Suolo (rizosfera). 25,3 254 0,31 89,5 96,5 6,10 45,6 47,1 49 2,61 -0,12 116 fogile 0,56 36,4 0,16 1,80 6,63 13,4 0,24 1,85 0,77 0,33 0,17 34,8 Suolo (rizosfera) 26,0 292 0,31 66,6 95,1 5,80 41,2 64,3 5,5 3,37 -0,12 124 Furtiti -0,04 2,33 -0,01 1,39 6,7 0,03 -0,01 1,91 0,93 0,30 0,17 17,0 Furtiti -0,04 2,33 -0,01 1,39 6,7 0,03 -0,01 1,91 0,93 0,33 -0,12 189 Furtiti -0,04 2,33 -0,01 1,39 6,7 0,03 -0,01 1,04 -0,92 0,04 -0,99 1,00 Furtiti -0,04 2,33 -0,01 1,39 6,7 0,03 -0,01 1,04 -0,99 0,24 -0,09 1,00 Furtiti -0,04 2,33 -0,01 1,39 6,7 0,03 -0,01 1,04 -0,99 0,24 -0,09 1,00 Furtiti -0,04 2,38 -0,01 -0,33 -0,01 -0,04 -0,05 -0,09 2,72 Furtiti -0,04 2,38 -0,01 -0,03 -0,00 -0,05 -0,09 -0,00 -0,00 -0,00 -0,00 Furtiti -0,04 2,38 -0,01 -0,03 -0,00 -0,05 -0,09 -0,00 -		Pomodoro	Suolo (rizosfera).	10,8	234	0,36	49,6	141	1,66	22,2	62,0	2,45	2,34	<0,12	147
Pomodoro			foglie	0,26	31,5	0,18	1,29	4,27	1,15	0,03	1,81	0,82	0,15	0,13	37.8
Suolo (rizosfera) Signature Signatur		Cavolo nero	Suolo (rizosfera)	47,7	1411	1,33	61,1	172	2,00	27,4	534	22,5	2,48	<0,12	283
Pomodoro Frutti Could (rizosfera) Could	7		foglie	1,27	62,5	0,52	4,54	15,4	8,01	0,67	14,4	1,30	0,25	0,17	68,3
Pomodoro Suolo (rizosfera). 42.2 1299 1,34 33,2 204 1,74 24,7 454 18,9 1,65 0,12 259 Formitian Performance Form	Ş	кара	Suolo (rizosfera).	58,7	1431	1,47	65,2	187	2,30	28,7	549	24,2	2,03	<0,12	306
Suolo (rizosfera). 42.2 1299 1,34 33.2 204 1,74 24,7 454 18.9 1.65 <0,12 259		Damadasa	frutti	<0,04	10,3	<0,01	0,36	13,0	<0,03	<0,01	1,18	0,62		<0,09	20,4
Cavolo nero Suolo (rizosfera) 25,3 254 0,31 89,5 96,5 6,10 45,6 47,1 4,9 2,61 0,12 116 foglie 0,56 36,4 0,16 1,80 6,63 13,4 0,24 1,85 0,77 0,33 0,17 34,8 suolo (rizosfera) 26,0 292 0,31 66,6 95,1 5,80 41,2 64,3 5,5 3,37 0,12 124 frutti 0,42 18,2 0,15 2,12 4,33 5,04 0,01 1,91 0,93 0,30 0,17 17,8 suolo (rizosfera) 20,7 1099 0,49 72,9 78,8 1,33 42,9 69,8 6,18 2,33 0,12 189 frutti 0,04 2,33 0,01 1,39 6,7 0,03 0,01 1,04 0,69 2,06 0,09 17,0 100 (rizosfera) 21,3 1116 0,54 74,1 79,0 1,35 43,3 75,0 6,27 2,29 0,12 181 foglie 0,18 38,9 0,21 2,43 8,11 4,07 0,19 2,78 0,90 0,24 0,09 49,2 suolo (rizosfera) 17,6 1484 1,08 148 211 3,00 27,5 265 7,8 25,2 0,12 373 suolo (rizosfera) 24,7 1685 1,41 132 239 2,50 33,1 248 8,5 9,87 0,43 433 suolo (rizosfera) 20,6 1097 1,10 79,1 413 1,58 27,1 182 6,49 9,02 0,12 310 frutti 0,04 2,38 0,01 0,03 50,0 0,13 0,01 0,85 0,39 0,05 0,09 2,72 suolo (rizosfera) 23,3 1595 1,26 158 189 2,50 30,03 0,01 0,89 0,67 0,05 0,09 18,7 suolo (rizosfera) 24,8 1564 1,34 145,4 221 1,50 28,3 230 7,7 11,2 0,12 312 foglie 0,39 2,9,8 0,16 1,31 4,95 11,5 0,10 1,81 0,78 0,18 0,24 30,7 suolo (rizosfera) 20,3 354 0,54 59,7 78,0 1,91 22,8 74,3 4,9 1,45 0,49 103 foglie 0,39 2,9,8 0,21 1,66 7,16 12,9 0,15 2,44 0,83 0,24 0,26 36,3 suolo (rizosfera) 20,3 426 0,47 110 81,5 2,72 230 77,1 5,3 1,98 0,48 117 tubero 0,04 3,3 0,01 0,02 8,8 0,56 0,01 0,77 0,56 0,05 0,09 17,9 suolo (rizosfera) 20,3 426 0,47 110 81,5 2,72 230 77,1 5,3 1,98 0,48 117 tubero 0,04 3,3 0,01 0,02 8,8 0,56 0,01 0,77 0,56 0,05 0,09 17,9 suolo (rizosfera) 21,7 490 0,55 57,9 95,1 1,71 0,08 0,38 1,19 0,28 0,27 21,0 100 100 100 100 100 100 100 100 100		Pomodoro	Suolo (rizosfera).	42,2	1299	1,34	33,2	204	1,74	24,7	454	18,9		<0,12	259
Suolo (rizosfera) 25,3 254 0,31 89,5 96,5 6,10 45,6 47,1 4,9 2,61 40,12 116 foglie 0,56 36,4 0,16 1,80 6,63 13,4 0,24 1,85 0,77 0,33 0,17 34,8 suolo (rizosfera) 26,0 292 0,31 66,6 95,1 5,80 41,2 64,3 5,5 3,37 <0,12 124 116 70 70 70 70 70 70 70 7			foglie	0,23	14,5	0,10	0,65	3,63	1,47	0,01	1,58	0,78	0,24	0,13	23,7
Peperoncino Peperoncino Peperoncino Peperoncino Pomodoro		Cavolo nero	Suolo (rizosfera)	25,3	254	0,31	89,5	96,5	6,10	45,6	47,1	4,9	2,61	<0,12	116
Peperoncino Frutti	Ş		foglie	0,56	36,4	0,16	1,80	6,63	13,4	0,24	1,85	0,77	0,33	0,17	34,8
Peperoncino suolo (rizosfera) 20,7 1099 0,49 72,9 78,8 1,33 42,9 69,8 6,18 2,33 <0,12 189 frutti		Rapa	suolo (rizosfera)	26,0	292	0,31	66,6	95,1	5,80	41,2	64,3	5,5	3,37	<0,12	124
Fomodoro Suolo (rizosfera) 20,7 1099 0,49 72,9 78,8 1,33 42,9 69,8 6,18 2,33 <0,12 189			frutti	0,42	18,2	0,15	2,12	4,33	5,04	0,01	1,91	0,93	0,30	0,17	17,8
Pomodoro Suolo (rizosfera) 21,3 1116 0.54 74,1 79,0 1.35 43,3 75,0 6.27 2.29 c0.12 181	4	Peperoncino	suolo (rizosfera)	20,7	1099	0,49	72,9	78,8	1,33	42,9	69,8	6,18	2,33	<0,12	189
Formula (rizosfera) 21,3 1116 0,54 74,1 79,0 1,35 43,3 75,0 6,27 2,29 <0,12 181 foglie 0,18 38,9 0,21 2,43 8,11 4,07 0,19 2,78 0,90 0,24 <0,09 49,2 suolo (rizosfera) 17,6 1484 1,08 148 211 3,00 27,5 265 7,8 25,2 <0,12 373 foglie 0,27 18,9 0,20 1,78 5,10 7,92 0,09 2,08 0,82 0,27 0,17 36,8 suolo (rizosfera) 24,7 1685 1,41 132 239 2,50 33,1 248 8,5 9,87 0,43 433 rull (rizosfera) 20,6 1097 1,10 79,1 413 1,58 27,1 182 6,49 9,02 <0,12 310 tuberi <0,04 1,5 <0,01 <0,02 9,3 <0,03 <0,01 0,89 0,67 <0,05 <0,09 18,7 suolo (rizosfera) 23,3 1595 1,26 158 189 2,50 30,0 252 8,3 9,83 <0,12 345 tubero <0,04 2,9 <0,01 1,52 17,1 <0,03 0,41 1,22 0,57 <0,05 <0,09 22,9 suolo (rizosfera) 24,8 1564 1,34 145,4 221 1,50 28,3 230 7,7 11,2 <0,12 321 foglie 0,32 39,8 0,16 1,31 4,95 11,5 0,10 1,81 0,78 0,18 0,24 30,7 suolo (rizosfera) 20,3 345 0,54 59,7 78,0 1,91 22,8 74,3 4,9 1,45 0,49 103 suolo (rizosfera) 20,3 426 0,47 110 81,5 2,72 23,0 77,1 5,3 1,98 0,48 117 tubero <0,04 3,3 <0,01 <0,02 8,8 0,56 <0,01 0,77 0,56 <0,05 <0,09 17,9 suolo (rizosfera) 21,7 490 0,55 57,9 95,1 1,71 24,0 80,2 5,2 1,99 <0,12 112	Š		frutti	<0,04	2,33	<0,01	1,39	6,7	0,03	<0,01	1,04	0,69	2,06	<0,09	17,0
Cavolo nero Suolo (rizosfera) 17,6 1484 1,08 148 211 3,00 27,5 265 7,8 25,2 <0,12 373		Pomodoro	suolo (rizosfera)	21,3	1116	0,54	74,1	79,0	1,35	43,3	75,0	6,27	2,29	<0,12	181
Rapa foglie 0,27 18,9 0,20 1,78 5,10 7,92 0,09 2,08 0,82 0,27 0,17 36,8 3000 (rizosfera) 24,7 1685 1,41 132 239 2,50 33,1 248 8,5 9,87 0,43 434 435			foglie	0,18	38,9	0,21	2,43	8,11	4,07	0,19	2,78	0,90	0,24	<0,09	49,2
Rapa Suolo (rizosfera) 24,7 1685 1,41 132 239 2,50 33,1 248 8,5 9,87 0,43 433		Cavolo nero	suolo (rizosfera)	17,6	1484	1,08	148	211	3,00	27,5	265	7,8	25,2	<0,12	373
Pomodoro frutti	_		foglie	0,27	18,9	0,20	1,78	5,10	7,92	0,09	2,08	0,82	0,27	0,17	36,8
Pomodoro Suolo (rizosfera) 20,6 1097 1,10 79,1 413 1,58 27,1 182 6,49 9,02 <0,12 310		кара	suolo (rizosfera)	24,7	1685	1,41	132	239	2,50	33,1	248	8,5	9,87	0,43	433
Patata rossa tuberi	A 5	Pomodoro		<0,04	2,38	<0,01	0,03	50,0	0,13	<0,01	0,85	0,39	<0,05	<0,09	27,2
Patata rossa suolo (rizosfera) 23,3 1595 1,26 158 189 2,50 30,0 252 8,3 9,83 <0,12 345 tubero <0,004 2,9 <0,01 1,52 17,1 <0,03 0,41 1,22 0,57 <0,05 <0,09 22,9 suolo (rizosfera) 24,8 1564 1,34 145,4 221 1,50 28,3 230 7,7 11,2 <0,12 321 foglie 0,32 39,8 0,16 1,31 4,95 11,5 0,10 1,81 0,78 0,18 0,24 30,7 suolo (rizosfera) 20,3 354 0,54 59,7 78,0 1,91 22,8 74,3 4,9 1,45 0,49 103 foglie 0,39 29,8 0,21 1,66 7,16 12,9 0,15 2,44 0,83 0,24 0,26 36,3 suolo (rizosfera) 20,3 426 0,47 110 81,5 2,72 23,0 77,1 5,3 1,98 0,48 117 tubero <0,004 3,3 <0,01 <0,02 8,8 0,56 <0,01 0,77 0,56 <0,05 <0,09 17,9 suolo (rizosfera) 21,7 490 0,55 57,9 95,1 1,71 24,0 80,2 5,2 1,99 <0,12 112 foglie 0,04 34,8 0,02 <0,20 4,35 11,1 0,08 0,38 1,19 0,28 0,27 21,0 suolo (rizosfera) 10,5 1315 17,3 77,0 188 1,60 14,62 69,5 5,76 3,33 0,45 138 frutti <0,0,04 2,5 <0,01 1,95 35,3 <0,03 <0,01 0,90 0,62 2,10 <0,09 17,8	٧,	rolliouoro		20,6	1097	1,10	79,1	413	1,58	27,1	182	6,49	9,02	<0,12	310
Patata bianca Cavolo nero Suolo (rizosfera) 23,3 1595 1,26 158 189 2,50 30,0 252 8,3 9,83 <0,12 345		Patata rossa		<0,04	1,5	<0,01	<0,02	9,3	<0,03	<0,01	0,89	0,67	<0,05	<0,09	18,7
Patata bianca suolo (rizosfera) 24,8 1564 1,34 145,4 221 1,50 28,3 230 7,7 11,2 <0,12 321 Cavolo nero foglie 0,32 39,8 0,16 1,31 4,95 11,5 0,10 1,81 0,78 0,18 0,24 30,7	_		suolo (rizosfera)	23,3	1595	1,26	158	189	2,50	30,0	252	8,3	9,83	<0,12	345
Cavolo nero		Patata bianca		<0,04	2,9	<0,01	1,52	17,1	<0,03	0,41	1,22	0,57	<0,05	<0,09	22,9
Cavolo nero suolo (rizosfera) 20,3 354 0,54 59,7 78,0 1,91 22,8 74,3 4,9 1,45 0,49 103 Rapa foglie 0,39 29,8 0,21 1,66 7,16 12,9 0,15 2,44 0,83 0,24 0,26 36,3 suolo (rizosfera) 20,3 426 0,47 110 81,5 2,72 23,0 77,1 5,3 1,98 0,48 117 Patata bianca suolo (rizosfera) 21,7 490 0,55 57,9 95,1 1,71 24,0 80,2 5,2 1,99 <0,12 112 Cavolo nero foglie 0,04 34,8 0,02 <0,20 4,35 11,1 0,08 0,38 1,19 0,28 0,27 21,0 suolo (rizosfera) 10,5 1315 17,3 77,0 188 1,60 14,62 69,5 5,76 3,33 0,45 138 frutti <0,04 2,5 <0,01 1,95 35,3 <0,03 <0,01 0,90 0,62 2,10 <0,09 17,8		. stata branta		24,8	1564	1,34	145,4	221	1,50	28,3	230	7,7	11,2	<0,12	321
Suolo (rizostera) 20,3 354 0,54 59,7 78,0 1,91 22,8 74,3 4,9 1,45 0,49 103		Cavolo nero	foglie	0,32	39,8	0,16	1,31	4,95	11,5	0,10	1,81	0,78	0,18	0,24	30,7
Rapa suolo (rizosfera) 20,3 426 0,47 110 81,5 2,72 23,0 77,1 5,3 1,98 0,48 117 Hata bianca tubero <0,04 3,3 <0,01 <0,02 8,8 0,56 <0,01 0,77 0,56 <0,05 <0,09 17,9 suolo (rizosfera) 21,7 490 0,55 57,9 95,1 1,71 24,0 80,2 5,2 1,99 <0,12 112 Cavolo nero foglie 0,04 34,8 0,02 <0,20 4,35 11,1 0,08 0,38 1,19 0,28 0,27 21,0 suolo (rizosfera) 10,5 1315 17,3 77,0 188 1,60 14,62 69,5 5,76 3,33 0,45 138 frutti <0,04 2,5 <0,01 1,95 35,3 <0,03 <0,01 0,90 0,62 2,10 <0,09 17,8	_	CUVOIO IICIO	` '	20,3	354	0,54	59,7	78,0	1,91	22,8	74,3	4,9	1,45	0,49	103
Patata bianca tubero <0,04 3,3 <0,01 <0,02 8,8 0,56 <0,01 0,77 0,56 <0,05 <0,09 17,9 suolo (rizosfera) 21,7 490 0,55 57,9 95,1 1,71 24,0 80,2 5,2 1,99 <0,12	A 6	Rana	foglie	0,39	29,8	0,21	1,66	7,16	12,9	0,15	2,44	0,83	0,24	0,26	36,3
Patata bianca suolo (rizosfera) 21,7 490 0,55 57,9 95,1 1,71 24,0 80,2 5,2 1,99 <0,12 112 Cavolo nero foglie 0,04 34,8 0,02 <0,20 4,35 11,1 0,08 0,38 1,19 0,28 0,27 21,0 suolo (rizosfera) 10,5 1315 17,3 77,0 188 1,60 14,62 69,5 5,76 3,33 0,45 138 Frutti <0,04 2,5 <0,01 1,95 35,3 <0,03 <0,01 0,90 0,62 2,10 <0,09 17,8	8	Napa	suolo (rizosfera)	20,3	426	0,47	110	81,5	2,72	23,0	77,1	5,3	1,98	0,48	117
Cavolo nero Foglie 0,04 34,8 0,02 <0,20 4,35 11,1 0,08 0,38 1,19 0,28 0,27 21,0 0 0,00		Patata hiance	tubero	<0,04	3,3	<0,01	<0,02	8,8	0,56	<0,01	0,77	0,56	<0,05	<0,09	17,9
Cavolo nero suolo (rizosfera) 10,5 1315 17,3 77,0 188 1,60 14,62 69,5 5,76 3,33 0,45 138 frutti <0,04 2,5 <0,01 1,95 35,3 <0,03 <0,01 0,90 0,62 2,10 <0,09 17,8		r atata Dianta	suolo (rizosfera)	21,7	490	0,55	57,9	95,1	1,71	24,0	80,2	5,2	1,99	<0,12	112
Suolo (rizostera) 10,5 1315 17,3 77,0 188 1,60 14,62 69,5 5,76 3,33 0,45 138 frutti <0,04 2,5 <0,01 1,95 35,3 <0,03 <0,01 0,90 0,62 2,10 <0,09 17,8 Pomodoro		Cavolo pero	_	0,04	34,8	0,02	<0,20	4,35	11,1	0,08	0,38	1,19	0,28	0,27	21,0
Pomodoro		Cavolo liero	suolo (rizosfera)	10,5	1315	17,3	77,0	188	1,60	14,62	69,5	5,76	3,33	0,45	138
suolo (rizosfera) 13,0 1056 0,55 29,3 190 0,70 14,2 84,0 4,69 4,31 <0,12 164	Š	Domodoro	frutti	<0,04	2,5	<0,01	1,95	35,3	<0,03	<0,01	0,90	0,62	2,10	<0,09	17,8
		FUIIUUUIU	suolo (rizosfera)	13,0	1056	0,55	29,3	190	0,70	14,2	84,0	4,69	4,31	<0,12	164

Tabella 6.8. Concentrazione di alcuni EPT negli apparati eduli e nell'interfaccia suolo-radici di piante orticole raccolte nel bacino del Torrente Baccatoio nel corso del 2015. Valori espressi in mg/kg. I valori in rosso indicano concentrazioni che superano i limiti previsti dal D. Lgs. 152/2006 nei suoli ad uso verde pubblico, privato e residenziale. Per Ba e Mo non sono disponibili limiti di legge.

Sito	Vegetale	Organo / Interfaccia	As	Ba	Cd	Cr	Cu	Мо	Ni	Pb	Sb	Sn	П	Zn
	Cavolo nero	foglie	0,07	69,8	0,02	0,32	3,10	1,49	0,07	0,11	1,13	0,37	0,21	15,9
	Cavolo liero	suolo (rizosfera)	25,4	773	3,40	36,2	39,6	1,19	20,3	90,2	6,81	1,73	<0,12	112
	Pana	foglie + cime	0,06	42,6	0,03	2,15	5,50	2,88	0,07	0,09	1,06	0,35	0,29	28,4
	Rapa	suolo (rizosfera)	23,3	473	3.39	45,5	36,6	1,34	18,9	83,6	6,15	1,60	0,51	98,0
Ş q	Pomodoro	frutto	<0,04	3,21	<0,01	2,52	35,5	0,06	<0,01	0,11	0,53	0,37	<0,09	16,8
× 4	Politodoro	suolo (rizosfera)	24,8	507	3,28	25,5	74	1,49	7,3	1,08	1,13	2,05	<0,12	123
•	Patata	tubero	<0,04	3,90	<0,01	<0,02	8,8	1,19	0,07	0,09	6,81	0,35	<0,09	10,3
	bianca	suolo (rizosfera)	26,6	701	3,55	36,1	39,9	2,88	20,3	90,2	1,06	1,73	0,42	119
	D	tubero	<0,04	1,93	<0,01	<0,02	7,2	1,34	<0,01	1,08	6,15	1,60	<0,09	10,0
	Patata rossa	suolo (rizosfera)	16,3	1387	2,99	30,6	27,8	0,06	8,9	83,6	0,53	2,05	0,45	66,3
	C	foglie	0,06	49,5	<0,05	0,71	4,61	0,03	1,10	0,34	1,20	0,39	0,24	36,8
	Cavolo nero	suolo (rizosfera)	37,6	1413	2,67	44,8	80,4	1,80	19,8	324	17,2	1,78	0,41	181
4 -	Damadasa	frutti	<0,04	4,52	<0,01	2,12	53,1	<0,03	<0,01	0,98	0,48	1,74	<0,09	16,5
۵ ۲	Pomodoro	suolo (rizosfera)	51,2	2378	2,10	66,7	119	2,83	19,6	521	29,9	1,89	<0,12	256
	Patata	tubero	<0,04	2,54	<0,01	0,17	11,3	<0,03	<0,01	0,74	0,63	<0,05	<0,09	15,2
	bianca	suolo (rizosfera)	52,0	2354	1,90	44,1	124	2,25	20,7	564	28,2	1,96	<0,12	265
۶ ۸	_	foglie	0,04	107	0,025	1,17	5,57	4,76	<0,02	1,42	1,27	0,31	0,21	27,7
Ş 2	Rapa	suolo (rizosfera)	30,1	1438	12,9	50,7	50,2	1,74	23,5	98,1	18,7	3,47	1,29	214
5 m	Damadana	frutti	<0,04	4,00	<0,01	2,05	13,4	0,31	0,11	0,98	0,56	2,08	<0,09	22,4
× 1	Pomodoro	suolo (rizosfera)	35,9	2194	1,45	44,6	115	1,83	38,3	328	27,6	2,66	<0,12	346
۶.		foglie	<0,04	133	<0,01	0,16	7,6	3,82	<0,01	0,88	<0,06	<0,05	2,8	70,3
VCA 14	Cavolo nero	suolo (rizosfera)	67,9	2790	2,23	40,4	361	1,18	29,0	612	24,3	22,3	1,23	856
5 10	D	frutti	<0,04	2,41	<0,01	18,01	46,0	<0,03	0,85	0,96	0,75	1,75	<0,09	14,8
δ t	Pomodoro	suolo (rizosfera)	7,91	233	0,27	35,6	75	0,87	13,5	36,2	1,82	2,28	<0,12	62,5
۷.6		frutti	<0,04	4,12	<0,01	0,15	31,4	0,41	<0,01	0,75	0,53	<0,05	<0,09	24,0
Ş #	Pomodoro	suolo (rizosfera)	9,88	266	0,43	56,6	195	1,51	17,6	63,3	2,71	2,41	<0,12	126
۸.		frutti	<0,04	1,71	<0,01	1,93	22,2	<0,03	<0,01	0,92	0,51	1,35	<0,09	19,7
Ş 1	Pomodoro	suolo (rizosfera)	13,8	1059	0,68	41,3	229	1,81	24,4	93,0	4,81	3,31	<0,12	194
		frutti	<0,04	3,92	<0,01	0,96	35,9	0,18	<0,01	0,49	0,26	0,99	<0,09	6,22
۷	Pomodoro	suolo (rizosfera)	37,4	862	0,65	27,8	106	1,27	19,3	105	8,16	1,72	<0,12	152
δ 81		tubero	<0,04	2,11	<0,01	<0,02	9,1	0,26	<0,01	0,85	0,59	<0,05	<0,09	20,0
	Patata rossa	suolo (rizosfera)	37,1	807	0,66	25,3	104	1,20	18,8	104	8,61	1,55	<0,12	144
۷ -	_	frutti	<0,04	39,6	<0,01	2,40	13,0	<0,03	<0,01	0,76	0,48	<0,05	<0,09	15,8
Š ä	Pomodoro	suolo (rizosfera)	16,9	546	0,60	28,5	239	0,71	16,1	70,8	4,33	1,71	<0,12	103
		foglie	<0,04	135	<0,01	8,67	6,57	4,55	1,59	1,22	0,76	<0,05	2,25	41,5
۷ -	Cavolo nero	Suolo (rizosfera)	35,7	2372	1,10	107	118	2,86	44,6	145	10,9	2,91	0,40	220
Ş S	Pomodoro	frutti	<0,04	43,0	0,52	2,55	32,6	0,78	1,33	0,56	0,71	<0,05	<0,09	43,4
		suolo (rizosfera)	37,2	2355	1.06	106	119	2,70	40,5	160	12,2	2,80	0,21	223
			31,2	2333	1.00	100	113	2,10	40,3	100	12,2	2,00	0,21	223

Tabella 6.8. Segue.

Sia per As che per Cd le concentrazioni riscontrate negli apparati fogliari di cavolo nero di tutti i siti risultano inferiori ai 0.05 mg/kg di sostanza fresca. Invece per quanto riguarda il Pb le concentrazioni riscontrate negli apparati fogliari del cavolo nero superano i 0.30 mg/kg di sostanza fresca nei siti VCA1, VCA4, VCA5 e VCA20 (Figure 6.5, 6.6).

Figura 6.6. Concentrazione di Pb negli apparati fogliari di cavolo nero. Valori espressi in mg/kg di sostanza fresca. La linea rossa rappresenta il tenore massimo di Pb in prodotti orticoli (sostanza fresca) secondo il Regolamento CE n. 1881/2006 del 19/12/2006.

In Figura 6.7 viene evidenziata la capacità del cavolo nero di accumulare nei propri apparati fogliari significative concentrazioni di EPT: in tutti i campioni di foglie di cavolo nero analizzati prevalgono ponderalmente Ba e Zn, seguiti in concentrazioni variabili da Cu, Mo, Pb. Il Tl è presente negli apparati fogliari dei siti VCA12, VCA14, VCA20.

Nel caso dei frutti del pomodoro le concentrazioni degli EPT diminuiscono significativamente rispetto agli apparati fogliari del cavolo nero e sono, tranne nel caso del sito VCA20, cumulativamente inferiori ai 90 mg/kg di sostanza secca. Nei frutti del pomodoro le concentrazioni più significative sono rappresentate da Cu e Zn, secondariamente da Ba, Cr e Pb.

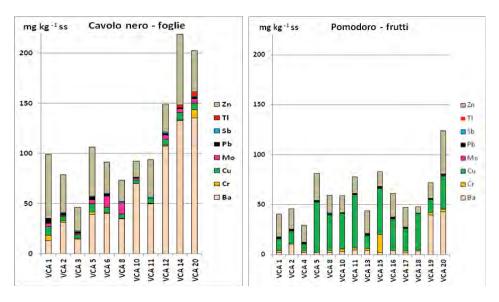


Figura 6.7. Rappresentazione delle cumulative delle concentrazioni di alcuni EPT (Ba, Cr, Cu, Mo, Pb, Sb, Tl e Zn) riscontrate negli apparati fogliari di cavolo nero e nei frutti di pomodoro prelevati nei siti interessati dal monitoraggio.

Valori espressi in mg/kg di sostanza secca.

6.7.3. Rilascio di EPT mediante cottura di vegetali: risultati preliminari

Nel caso specifico del sito VCA20, nelle parti eduli dei vegetali analizzati si riscontrano concentrazioni superiori ai 0.50 mg/kg per Sb con picchi in cardone, insalata verde e zucca (rispettivamente 0.80, 0.78 e 0.78 mg/kg); Mo con picchi significativi nella rapa (3.88-3.91 mg/kg) e Pb con picchi in insalata verde, radicchio e finocchio (2.03, 1.88, 1.86 mg/kg rispettivamente). Lo Zn presenta concentrazioni superiori ai 35 mg/kg con picchi nel radicchio e nel cardone (70.3 e 50.9 mg/kg rispettivamente). Il Tl mostra concentrazioni significative solo nel cavolo nero con accumulo nell'apparato fogliare variabile da 2.25 a 4.37 mg/kg.

Per valutare l'eventuale rilascio di EPT, foglie fresche di cavolo nero sono state sottoposte ad ebollizione per 3 ore. La componente vegetale è stata successivamente essiccata e macinata, quindi sottoposta a mineralizzazione ed analizzata mediante ICP-OES. L'acqua di ebollizione è stata fatta evaporare e portata ad un volume di 20 ml, quindi filtrata ed analizzata in ICP-OES. I risultati sono riportati nella Tabella 6.9.

VCA 2	20 – Macroelementi (mg kg-1)	Al	Са	Fe	К	Mg	Mn	Na	Р	S	Ti
Cavolo nero	Foglia basale (mg kg ⁻¹)	94.4	14106	232	5043	1812	47.6	1261	6068	9299	6.19
Cavolo nero	Foglia basale dopo bollitura (mg kg ⁻¹)	305	12021	414	4168	690	53.2	251	3646	3828	7.63
Acqua di	bollitura del cavolo nero (mg L ⁻¹)	0.66	880	1.64	141	1.52	9.57	182	685	0.09	0.66
VCA	20 - Microelementi (mg kg-1)	Ag	As	В	Ва	Ве	Cd	Co	Cr	Cu	Hg
Cavolo nero	Foglia basale (mg kg ⁻¹)	<dl< td=""><td><dl< td=""><td>16.0</td><td>135</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>8.67</td><td>6.57</td><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>16.0</td><td>135</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>8.67</td><td>6.57</td><td>0.09</td></dl<></td></dl<></td></dl<></td></dl<>	16.0	135	<dl< td=""><td><dl< td=""><td><dl< td=""><td>8.67</td><td>6.57</td><td>0.09</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>8.67</td><td>6.57</td><td>0.09</td></dl<></td></dl<>	<dl< td=""><td>8.67</td><td>6.57</td><td>0.09</td></dl<>	8.67	6.57	0.09
Cavolo nero	Foglia basale dopo bollitura (mg kg ⁻¹)	<dl< td=""><td><dl< td=""><td>9.6</td><td>315</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>3.40</td><td>7.58</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>9.6</td><td>315</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>3.40</td><td>7.58</td><td>0.26</td></dl<></td></dl<></td></dl<></td></dl<>	9.6	315	<dl< td=""><td><dl< td=""><td><dl< td=""><td>3.40</td><td>7.58</td><td>0.26</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>3.40</td><td>7.58</td><td>0.26</td></dl<></td></dl<>	<dl< td=""><td>3.40</td><td>7.58</td><td>0.26</td></dl<>	3.40	7.58	0.26
Acqua di	bollitura del cavolo nero (mg L ⁻¹)	<dl< td=""><td><dl< td=""><td>2.55</td><td>2.12</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>2.55</td><td>2.12</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	2.55	2.12	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.04</td><td></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.04</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.04</td><td></td></dl<>	0.04	
VCA	20 - Microelementi (mg kg ⁻¹)	Li	Мо	Ni	Pb	Sb	Sn	Sr	Tİ	V	Zn
Cavolo nero	Foglia basale (mg kg ⁻¹)	0.57	4.55	1.59	1.22	0.76	<dl< td=""><td>29.6</td><td>4.37</td><td><dl< td=""><td>41.5</td></dl<></td></dl<>	29.6	4.37	<dl< td=""><td>41.5</td></dl<>	41.5
Cavolo nero	Foglia basale dopo bollitura (mg kg ⁻¹)	1.48	1.77	0.04	2.25	0.70	<dl< td=""><td>37.5</td><td>0.59</td><td>0.18</td><td>32.0</td></dl<>	37.5	0.59	0.18	32.0
Acqua di	bollitura del cavolo nero (mg L ⁻¹)	0.01	0.22	0.02	<dl< td=""><td><dl< td=""><td><dl< td=""><td>1.91</td><td>0.86</td><td><dl< td=""><td>1</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>1.91</td><td>0.86</td><td><dl< td=""><td>1</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.91</td><td>0.86</td><td><dl< td=""><td>1</td></dl<></td></dl<>	1.91	0.86	<dl< td=""><td>1</td></dl<>	1

Tabella 6.9. Trattamento mediante ebollizione di foglie di cavolo nero raccolte nel sito VCA20 (DL: *detection limit,* limite di rilevabilità).

Si evidenzia come dopo il trattamento le foglie di cavolo nero hanno ceduto significative aliquote di K, Mg, Na, P, S tra i macroelementi e di B, Cr, Mo, Ni, Tl, Zn tra i microelementi e si siano invece concentrati i metalli (Al, Fe, Ti, Cu, Pb) oltre a Ba. La conferma si ha dall'analisi dell'acqua di ebollizione da cui si evince una cessione significativa di Tl, ma non di Pb. La conferma di tali risultati necessita comunque un proseguimento della ricerca con sperimentazioni più mirate.

6.8. Considerazioni sui risultati conseguiti nei siti interessati da discariche di origine mineraria

Lungo la vallata del Torrente Baccatoio sono presenti due tipi di discariche derivanti dalle passate attività di estrazione mineraria. Un primo tipo caratterizzato da depositi di ganga di granulometria grossolana in genere prossimi alle gallerie minerarie e differenziati arealmente in funzione del periodo di lavorazione. Un secondo tipo è caratterizzato dagli scarti dei processi di flottazione a granulometria fine per lo più localizzati in prossimità del torrente verso la terminazione sudoccidentale del paese di Valdicastello.

In entrambi i casi si evidenziano differenti concentrazioni di EPT derivanti dalla alterazione dei solfuri presenti nei litotipi geogenici o dai trattamenti mineralurgici.

I rilievi effettuati sui siti di discarica derivanti dalle passate attività di estrazione e di lavorazione dislocate in diverse aree del bacino del Torrente Baccatoio hanno evidenziato la formazione di suoli poco evoluti (Entisols, SSS 2012) ed interessati da vegetazione erbacea e/o arbustiva in situazioni morfologiche pianeggianti o di pendio poco accentuato. In Tabella 6.10 vengono riportati i dati analitici relativi ai suoli e alla componente organica (lettiera) presenti in alcuni siti minerari (MIN1 e MIN2) e in alcune discariche di origine mineraria (DIS1, DIS6, DIS7, DIS8, DIS9) presenti nella zona di indagine.

Si osserva che nella maggior parte dei siti indagati si ha il superamento della soglia di concentrazione previsto dalla normativa per zone ad uso commerciale e industriale (D.Lgs. 152/2006.) per As (> 50 mg/kg), Hg (> 5 mg/kg), Sb (>30 mg/kg) e Tl (>10 mg/kg). Nei siti MIN1 e MIN2 si ha anche il superamento delle concentrazioni di Pb (> 1000 mg/kg) e di Zn (> 1500 mg/kg). L'elevato tenore degli elementi sopracitati è da attribuire alla presenza delle mineralizzazioni con solfuri e solfosali con anomalie geochimiche di Tl, Hg, As, Sb, Ag, Cu, Pb presenti nel substrato pedogenetico. Lo spessore di suolo riscontrato è già in grado di ospitare una rizosfera attiva con lo sviluppo in superficie di vegetazione erbacea ed arbustiva. La Figura 6.8 mostra la

rappresentazione cumulativa delle concentrazioni degli EPT riscontrati nei diversi apparati della vegetazione erbacea (radici e foglie) nell'ambito dei siti indagati; Cd, Hg e Sn non vengono riportati in quanto le rispettive concentrazioni non ne permettono la visualizzazione.

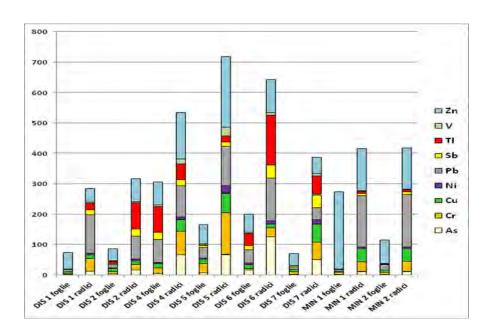


Figura 6.8. Rappresentazione delle cumulative delle concentrazioni di EPT (As, Cr, Cu, Ni, Pb, Sb, Tl, V e Zn) riscontrate negli apparati (radici e foglie) della vegetazione erbacea prelevata nei siti interessati da discariche minerarie. Valori espressi in mg/kg.

Sito	Profilo	Ag	As	Ва	Cd	Cr	Cu	Hg	Мо	Ni	Pb	Sb	Sn	TI	Zn
	lettiera	9,6	109,8	2519	4,16	45,4	48,5	9,10	3,1	12,2	1318	181	2,13	28,2	902
MIN 1	topsoil	12,7	129,4	2525	10,91	51,5	66,1	23,9	3,7	16,3	1356	229	3,76	83,4	1933
	subsoil	34,3	234,6	2519	4,94	29,7	26,3	17,7	5,0	5,4	2908	324	0,93	49,9	479
	lettiera	9,61	96,1	2530	3,70	46,1	95,4	8,04	2,0	23,2	1009	91,4	2,82	14,9	843
MIN 2	topsoil	10,7	111	2518	7,14	39,4	74,8	8,71	2,4	26,9	1184	119	2,00	18,0	1380
	subsoil	24,9	213	1440	7,67	17,1	69,9	21,1	3,0	11,3	1456	237	0,67	28,3	2262
	lettiera	16,2	165	2413	1,81	44,5	13,5	12,7	14,3	14,6	249	429	1,31	46,0	288
DIS 1	topsoil	16,0	158	2415	0,33	33,9	12,4	12,9	14,0	11,3	209	339	1,34	37,7	297
	subsoil	10,2	273	2435	0,44	38,6	8,1	24,8	22,0	34,5	197	958	1,91	70,7	207
	lettiera	0,36	32,1	2399	0,06	4,38	9,80	0,20	3,16	5,10	57,6	20,2	0,29	24,6	49,8
DIS 6	topsoil	7,27	285	2442	2,51	31,3	16,7	18,2	13,2	39,1	410	287	1,59	185	353
	subsoil	2,12	108	2373	62,7	31,4	5,24	18,1	6,68	16,6	65,5	111	0,49	44,9	299
	lettiera	0,66	1,75	1663	0,02	1,33	8,2	0,04	0,54	2,76	5,74	5,67	0,48	0,51	28,3
DIS 7	topsoil	3,36	249	2402	4,91	239	524	5,31	22,1	129	104,1	232	58,9	24,0	132
	subsoil	18,7	474	2379	1,74	14,9	62,8	56,1	39,3	9,56	157,0	1469	2,71	71,7	257
	lettiera	2,91	18,0	2578	1,31	19,2	24,0	1,01	1,36	13,1	221	22,4	<dl< td=""><td>3,37</td><td>144</td></dl<>	3,37	144
DIS 8	topsoil	3,42	231,0	2579	0,71	62,3	31,9	1,00	3,08	27,6	503	83,0	2,90	13,4	233
	subsoil	<dl< td=""><td>43,5</td><td>232</td><td>0,54</td><td>65,5</td><td>24,8</td><td><dl< td=""><td>2,15</td><td>33,6</td><td>89</td><td>5,41</td><td>2,29</td><td><dl< td=""><td>175</td></dl<></td></dl<></td></dl<>	43,5	232	0,54	65,5	24,8	<dl< td=""><td>2,15</td><td>33,6</td><td>89</td><td>5,41</td><td>2,29</td><td><dl< td=""><td>175</td></dl<></td></dl<>	2,15	33,6	89	5,41	2,29	<dl< td=""><td>175</td></dl<>	175

	lettiera	<dl< th=""><th><dl< th=""><th>2153</th><th><dl< th=""><th>6,81</th><th>8,57</th><th>0,58</th><th>0,71</th><th>1,13</th><th>2,32</th><th>1,84</th><th><dl< th=""><th><dl< th=""><th>57,1</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>	<dl< th=""><th>2153</th><th><dl< th=""><th>6,81</th><th>8,57</th><th>0,58</th><th>0,71</th><th>1,13</th><th>2,32</th><th>1,84</th><th><dl< th=""><th><dl< th=""><th>57,1</th></dl<></th></dl<></th></dl<></th></dl<>	2153	<dl< th=""><th>6,81</th><th>8,57</th><th>0,58</th><th>0,71</th><th>1,13</th><th>2,32</th><th>1,84</th><th><dl< th=""><th><dl< th=""><th>57,1</th></dl<></th></dl<></th></dl<>	6,81	8,57	0,58	0,71	1,13	2,32	1,84	<dl< th=""><th><dl< th=""><th>57,1</th></dl<></th></dl<>	<dl< th=""><th>57,1</th></dl<>	57,1
DIS 9	topsoil	<dl< td=""><td>63,0</td><td>2560</td><td>0,09</td><td>33,4</td><td>30,3</td><td>0,45</td><td>17,08</td><td>74,2</td><td>40,0</td><td>111</td><td>3,13</td><td><dl< td=""><td>305</td></dl<></td></dl<>	63,0	2560	0,09	33,4	30,3	0,45	17,08	74,2	40,0	111	3,13	<dl< td=""><td>305</td></dl<>	305
	subsoil	0,50	54,5	2557	0,10	40,7	33,5	0,82	25,99	71,2	50,5	124	3,00	0,53	289

Tabella 6.10. Concentrazione di alcuni EPT nelle lettiere, nei Topsoils (0-10 cm) e nei Subsoils di profili pedologici evoluti su discariche di origine mineraria presenti nel bacino del Torrente Baccatoio. Prelievi effettuati nel corso del 2015. Valori espressi in mg/kg. I numeri in rosso indicano concentrazioni che superano i limiti previsti dal D.Lgs. 152/2006 nei suoli ad uso commerciale o industriale. Per Ba e Mo non sono disponibili limiti di legge.

6.9. Proposte per la messa in sicurezza dei siti contaminati

I risultati conseguiti nella fase di monitoraggio svolta nell'arco del 2015, finalizzato a valutare la qualità dei suoli e della vegetazione naturale e coltivata presenti nel bacino del Torrente Baccatoio, permettono di proporre due filoni di indagine: uno finalizzato a definire la sicurezza dei prodotti alimentari derivanti dalle coltivazioni agricole effettuate nel territorio; l'altro finalizzato alla rinaturalizzazione dei luoghi interessati dalle attività minerarie.

6.9.1. Proposta di sperimentazione per la sicurezza alimentare dei prodotti vegetali coltivati

In funzione dei risultati ottenuti si ritiene opportuno avanzare una proposta di possibile sperimentazione mirata a salvaguardare la salute umana nel caso di prodotti vegetali eduli contaminati da EPT inorganici delimitando gli ambiti di territorio agricolo per classi di vulnerabilità e fornendo indicazioni circa le modalità di trattamento naturale per la decontaminazione dei prodotti vegetali eduli.

Nella visione di fornire alla popolazione residente un quadro oggettivo dello stato delle aree agricole e al tempo stesso salvaguardare le abitudini e le tradizioni alimentari dell'area, la proposta di sperimentazione si andrà articolando in cinque azioni consequenziali tra loro.

- Prima azione: delimitazione su base cartografica e telerilevata degli ambiti agricoli che insistono sul territorio del bacino con distinzione tra colture orticole, oli-viticole ed altre. Operativamente verrà predisposto un database interattivo sul quale verranno a confluire tutti i dati relativi all'interfaccia suolo-pianta e ai punti di captazione delle acque utilizzate a scopo irriguo. Il database verrà aggiornato nel tempo e messo a disposizione della popolazione residente che, oltre alla consultazione, potrà segnalare situazioni anomale.
- Seconda azione: accordo con i proprietari di appezzamenti orticoli di conferire una porzione fresca della parte edule di almeno una pianta coltivata e di prelevare con apposita sonda una

porzione di suolo sotteso alla pianta stessa. Le procedure verranno spiegate e concordate in appositi incontri organizzati con i comitati che operano sul territorio.

- Terza azione: preparazione dei campioni di suolo e di vegetale da sottoporre ad analisi del contenuto in elementi totali mediante mineralizzazione in forno a microonde e misura tramite ICP-OES. I risultati analitici verranno inseriti nel database di cui alla prima azione.
- Quarta azione: nel caso di significative concentrazioni di uno o più EPT inorganici presenti negli organi vegetali si provvederà al trattamento degli stessi con temperature vicine al punto di ebollizione in acqua deionizzata. Si provvederà successivamente alla valutazione delle concentrazioni di EPT inorganici sia nei tessuti vegetali sottoposti al trattamento, che nelle acque di trattamento. Sarà così possibile effettuare un bilancio quantitativo del trasferimento di EPT nel sistema suolo-pianta (indice di traslocazione) e di espulsione dalla pianta sottoposta a trattamento. Si potrà quindi verificare se dopo il trattamento le concentrazioni di EPT presenti nella parte edule del vegetale siano diminuite al punto tale da non risultare più nocive per la salute umana.
- Quinta azione: definizione degli ambiti agricoli rilevati in classi di vulnerabilità in funzione del grado di contaminazione del suolo e del grado di trasferibilità nei prodotti vegetali coltivati. Saranno proposti criteri per il trattamento dei prodotti coltivati interessati da contaminazione di EPT inorganici. Saranno inoltre promossi incontri periodici con la popolazione, diffusione dei dati e dei risultati conseguiti anche attraverso l'organizzazione di workshop o convegni di carattere divulgativo e scientifico.

Queste attività si integrano quindi, per le specifiche competenze, nel percorso sanitario per la tutela della salute umana nel bacino del Torrente Baccatoio.

6.9.2. Proposta per la messa in sicurezza delle discariche di origine mineraria mediante opere di rinaturalizzazione

Nei siti in questione si ritiene opportuno procedere ad interventi di riqualificazione e ripristino ambientale come del resto suggerito dalle Direttive 2006/21/CE e 2008/98/CE. Del resto i rilievi e le campionature effettuati nel corso del 2015 su più siti di discarica presenti nella vallata del Torrente Baccatoio hanno evidenziato che sui depositi di più antica data (circa 20 anni) si sono sviluppati naturalmente processi pedogenetici con la formazione di spessori di suolo adeguati ad

ospitare una vegetazione erbacea ed arbustiva e quindi a stabilizzare le pendici dei versanti e al tempo stesso rallentare la percolazione in profondità delle acque pluviali.

Si ritiene pertanto che possano esserci tutti i presupposti per proporre dapprima una messa in sicurezza in situ dei residui minerari e di discarica delle aree minerarie dismesse presenti nella vallata del Torrente Baccatoio, una successiva rinaturalizzazione mediante tecniche di ingegneria naturalistica ed infine una distribuzione di materiale terrigeno atto ad accelerare od innescare i processi pedogenetici per favorire in tempi brevi la formazione di coltri vegetali erbacee ed arbustive.

Per quando riguarda il sistema suolo-pianta le attività preliminari per procedere alla rinaturalizzazione dei siti di discarica sono rappresentate da:

- valutazione della mobilizzazione degli EPT presenti nel suolo attraverso la procedura BCR che individua il diverso grado di disponibilità in funzione dei legami con sostanze umiche, solfuri, ossidi di Fe e Al;
- trattamento sperimentale dei residui minerari fini per la formazione di aggregati stabili mediante la tecnica delle "terre ricostituite";
- utilizzo di tecniche di *phytomining* mediante la capacità attitudinale di alcune piante (es.: *Iberis intermedia* e *Biscutella laevigata*) ad estrarre elevati contenuti di EPT (es.: tallio) dal suolo.

Tutti gli interventi di rinaturalizzazione dovranno essere concordati con le altre unità di ricerca in grado di prevedere interventi idrogeologici per la gestione delle acque acide di miniera (*Acid Mining Dreinage*, AMD) e di fito(bio)depurazione delle acque stesse.

7. Risultati analisi biologiche

7.1. Risultati dei campioni raccolti nella II campagna

I campioni raccolti nella II campagna (10 novembre 2015, 23 dicembre 2015) e relativi alle aree minerarie di M. Arsiccio e del Pollone sono mostrati nella Tabella 7.1.

Sito di studio	Campione
gall. Ribasso del Pianello 2	PIA2-EXTb
min. di M. Arsiccio	PIA2-EXTc
Tillia di Wi Alsicelo	PIA2-SLMb
gall. Sant'Olga	OLG-EXTb
min. di M. Arsiccio	OLG-STLb
Tillia di Wi Alsicelo	OLG-SLMb
	ANN-EXT
gall. Sant'Anna	ANN-STLb
min. di M. Arsiccio	ANN-STLc
	ANN-PLA
gall. Rosina - min. del Pollone	POL-EXT

Tabella 7.1. Denominazioni e tipologie dei campioni raccolti nei siti di studio. Per il significato delle sigle corrispondenti alle tipologie dei campioni (EXT, PLA, SLM, STL) vedere Relazione Breve Periodo e Relazione Medio Periodo.

Per ciò che concerne la comunità microbica procariotica (batteri), il marcatore genetico selezionato per i batteri ferro-ossidanti (gene 16S) è stato amplificato tramite la tecnica della PCR in tutti i campioni di DNA ottenuti e utilizzando le coppie di primers riportate nella Relazione di Breve Periodo. Risultati positivi sono stati ottenuti solo per alcuni campioni di DNA, come mostrato nelle Tabelle 7.2-7.5. In tutti gli altri casi la mancanza di un segnale positivo è stata interpretata come assenza delle sequenze bersaglio (e quindi dei corrispondenti microrganismi) nei campioni. In particolare, risultati positivi sono stati ottenuti per entrambe le tipologie di campioni analizzate del sito galleria Ribasso del Pianello 2 (PIA2-EXT, PIA2-SLM), per le tre tipologie di campioni analizzate per il sito galleria Sant'Olga (OLG-EXT, OLG-STL, OLG-SLM), e per l'unica tipologia di campione analizzata per il sito galleria Rosina (POL-EXT), mentre nessun risultato positivo è stato ottenuto per il sito galleria Sant'Anna. Tutti i risultati positivi ottenuti per i siti minerari di M. Arsiccio sono stati ottenuti con la coppia di primers FERRO458F/FERRO1473R, specifica per *Acidithiobacillus ferrooxidans*. I risultati positivi ottenuti per il sito minerario del Pollone sono stati ottenuti sia con

la coppia di primers Fi-Thio/R1-Thio, specifica per *Acidithiobacillus ferrooxidans*, e sia con la coppia di primers LEPTO176F/LEPTO679R, specifica per *Leptospirillum*.

Campione di DNA	Coppia di primers	Specificità	Risultato
PIA2-EXTb	Fi-Thio/R1-Thio	Acidithiobacillus	-
		ferrooxidans	
	FEROO458F/EUB1492R	Acidithiobacillus	-
		ferrooxidans	
	FERRO458F/FERRO1473R	Acidithiobacillus	+
		ferrooxidans	
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
PIA2-EXTc	Fi-Thio/R1-Thio	Acidithiobacillus	-
		ferrooxidans	
	FEROO458F/EUB1492R	Acidithiobacillus	-
		ferrooxidans	
	FERRO458F/FERRO1473R	Acidithiobacillus	-
		ferrooxidans	
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
PIA2-SLMb	Fi-Thio/R1-Thio	Acidithiobacillus	-
		ferrooxidans	
	FEROO458F/EUB1492R	Acidithiobacillus	-
		ferrooxidans	
	FERRO458F/FERRO1473R	Acidithiobacillus	+
		ferrooxidans	
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-

Tabella 7.2. Risultati ottenuti nelle reazioni di PCR con i campioni di DNA estratti dal sito galleria Ribasso del Pianello 2, miniera di M. Arsiccio (sigla PIA2). +: esito positivo, -: esito negativo.

Campione di DNA	Coppia di primers	Specificità	Risultato
OLG-EXTb	Fi-Thio/R1-Thio	Acidithiobacillus	-
		ferrooxidans	
	FEROO458F/EUB1492R	Acidithiobacillus	-
		ferrooxidans	
	FERRO458F/FERRO1473R	Acidithiobacillus	+
		ferrooxidans	
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
OLG -STLb	Fi-Thio/R1-Thio	Acidithiobacillus	-
		ferrooxidans	
	FEROO458F/EUB1492R	Acidithiobacillus	-
		ferrooxidans	
	FERRO458F/FERRO1473R	Acidithiobacillus	+
		ferrooxidans	
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
OLG -SLMb	Fi-Thio/R1-Thio	Acidithiobacillus	-
		ferrooxidans	
	FEROO458F/EUB1492R	Acidithiobacillus	-
		ferrooxidans	
	FERRO458F/FERRO1473R	Acidithiobacillus	+
		ferrooxidans	
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-

Tabella 7.3. Risultati ottenuti nelle reazioni di PCR con i campioni di DNA estratti dal sito galleria Sant'Olga, miniera di M. Arsiccio (sigla OLG).+: esito positivo, -: esito negativo.

ANN-EXTB FI-Thio/R1-Thio	Campione di DNA	Coppia di primers	Specificità	Risultato
FEROO458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FI-Thio/R1-Thio Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans	ANN -EXTb	Fi-Thio/R1-Thio	Acidithiobacillus	-
FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - ferrooxidans SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/SULFO606R Sulfobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/SULFO1137R Sulfobacillus - Sulfobacillus - ferrooxidans EUB27F/SULFO1137R Sulfobacillus - Sulfobacillus - ferrooxidans EUB27F/SULFO1137R Sulfobacillus - Ferrooxidans EUB27F/SULFO1137R Sulfobacillus - Ferrooxidans EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans			ferrooxidans	
FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans - FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans - EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans - EUB27F/SUFO1137R Acidithiobacillus - ferrooxidans - EUB27F/SUFO1137R Sulfobacillus - ferrooxidans - EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans - EEROO458F/EERRO1473R Acidithiobacillus - ferrooxidans - FEROO458F/FERRO1473R Acidithiobacillus - ferrooxidans - EUB27F/SULFO1137R Sulfobacillus - ferrooxidans - EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans - EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans - EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans - FEROO458F/EUB1492R Acidithiobacillus -		FEROO458F/EUB1492R	Acidithiobacillus	-
EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans - EUB27F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans - EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans - FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans - EUB27F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Acidithiobacillus - ferrooxidans - FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans - EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - ferrooxidans - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - EUB27F/SULFO1137R Sulfobacillus - EUB27F/SULFO1137R Sulfobacillus - EUB27F/SULFO1137R Sulfobacillus - EUB27F/SULFO1137R Acidithiobacillus - FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans - FEROO458F/EUB1492R Acidithiobacillus -			ferrooxidans	
EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERO0458F/EUB1492R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans		FERRO458F/FERRO1473R	Acidithiobacillus	-
LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-STLC FI-Thio/R1-Thio Acidithiobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - ferrooxidans FERO0458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans			ferrooxidans	
EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FI-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FI-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - EUB27F/LEPTO679R Leptospirillum - EUB27F/LEPTO679R Leptospirillum - EUB27F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - ferrooxidans FUB27F/SULFO1137R Sulfobacillus - FUB27F/SULFO11		EUB27F/LEPTO679R	Leptospirillum	-
SULFO170F/SULFO606R Sulfobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - SULFO170F/SULFO606R Sulfobacillus - FI-Thio/R1-Thio Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus ferrooxidans EUB27F/SULFO137R Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus ferrooxidans FEROO458F/FERRO1473R Acidithiobacillus ferrooxidans FEROO458F/FERRO1473R Acidithiobacillus ferrooxidans FUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - SULFO170F/SULFO606R Sulfobacillus - FUB27F/SULFO1137R Sulfobacillus - FUB27F/SULFO1137R Sulfobacillus - FUB27F/SULFO1137R Acidithiobacillus - FEROO458F/EUB1492R Acidithiobacillus - FEROO458F/FERRO1473R Acidithiobacillus		LEPTO176F/LEPTO679R	Leptospirillum	-
ANN-STLb Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum LEPTO176F/LEPTO679R Leptospirillum EUB27F/SULFO1137R Sulfobacillus SULFO170F/SULFO606R Sulfobacillus Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum EUB27F/LEPTO679R Leptospirillum EUB27F/SULFO1137R Sulfobacillus ferrooxidans EUB27F/SULFO1137R Sulfobacillus ferrooxidans EUB27F/SULFO1137R Sulfobacillus SULFO170F/SULFO606R Sulfobacillus FEROO458F/EUB1492R Acidithiobacillus ferrooxidans		EUB27F/SULFO1137R	Sulfobacillus	-
FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans ANN-STLC Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - SULFO170F/SULFO137R Sulfobacillus - ferrooxidans EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans		SULFO170F/SULFO606R	Sulfobacillus	-
FEROO458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - SULFO170F/SULFO606R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FI-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans	ANN-STLb	Fi-Thio/R1-Thio	Acidithiobacillus	-
FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - SULFO170F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FERO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - SULFO170F/SULFO137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FERO458F/FERRO1473R Acidithiobacillus - FERO458F/FERRO1473R Acidithiobacillus - SULFO170F/SULFO606R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FERO458F/EUB1492R Acidithiobacillus - FEROA58F/EUB1492R Acidithiobacillus - FEROA58F/EERRO1473R Acidithiobacillus - FEROA58F/EERRO1477R Acidithiobacillus - FEROA58F/EERRO1477R			ferrooxidans	
FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - LEPTO176F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans		FEROO458F/EUB1492R	Acidithiobacillus	-
EUB27F/LEPTO679R			ferrooxidans	
EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans - FERRO458F/EUB1492R Acidithiobacillus - ferrooxidans - EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans - FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans - FERO0458F/FERRO1473R Acidithiobacillus -		FERRO458F/FERRO1473R	Acidithiobacillus	-
LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-STLC Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans - FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans - FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans - EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans			ferrooxidans	
EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-STLC Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/FERRO1473R Acidithiobacillus -		EUB27F/LEPTO679R	Leptospirillum	-
SULFO170F/SULFO606R Sulfobacillus - ANN-STLC Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans		LEPTO176F/LEPTO679R	Leptospirillum	-
ANN-STLC Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/FERRO1473R Acidithiobacillus - ferrooxidans		EUB27F/SULFO1137R	Sulfobacillus	-
ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus - ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FEROO458F/FERRO1473R Acidithiobacillus - ferrooxidans		SULFO170F/SULFO606R	Sulfobacillus	-
FERRO458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ferrooxidans Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -	ANN-STLc	Fi-Thio/R1-Thio	Acidithiobacillus	-
FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FERO0458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -			ferrooxidans	
FERRO458F/FERRO1473R Acidithiobacillus ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -		FEROO458F/EUB1492R	Acidithiobacillus	-
ferrooxidans EUB27F/LEPTO679R Leptospirillum - LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -			ferrooxidans	
EUB27F/LEPTO679R		FERRO458F/FERRO1473R	Acidithiobacillus	-
LEPTO176F/LEPTO679R Leptospirillum - EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FERO0458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -			ferrooxidans	
EUB27F/SULFO1137R Sulfobacillus - SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -		EUB27F/LEPTO679R	Leptospirillum	-
SULFO170F/SULFO606R Sulfobacillus - ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus - ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -		LEPTO176F/LEPTO679R	Leptospirillum	-
ANN-PLA Fi-Thio/R1-Thio Acidithiobacillus ferrooxidans FEROO458F/EUB1492R Acidithiobacillus ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -		EUB27F/SULFO1137R	Sulfobacillus	-
ferrooxidans FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -		SULFO170F/SULFO606R	Sulfobacillus	-
FEROO458F/EUB1492R Acidithiobacillus - ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -	ANN-PLA	Fi-Thio/R1-Thio	Acidithiobacillus	-
ferrooxidans FERRO458F/FERRO1473R Acidithiobacillus -			ferrooxidans	
FERRO458F/FERRO1473R Acidithiobacillus -		FEROO458F/EUB1492R	Acidithiobacillus	-
·			ferrooxidans	
ferrooxidans		FERRO458F/FERRO1473R	Acidithiobacillus	-
-			ferrooxidans	
EUB27F/LEPTO679R <i>Leptospirillum</i> -		EUB27F/LEPTO679R	Leptospirillum	-

LEPTO176F/LEPTO679R	Leptospirillum	-
EUB27F/SULFO1137R	Sulfobacillus	-
SULFO170F/SULFO606R	Sulfobacillus	-

Tabella 7.4. Risultati ottenuti nelle reazioni di PCR con i campioni di DNA estratti dal sito galleria Sant'Anna, miniera di M. Arsiccio (sigla ANN). +: esito positivo, -: esito negativo.

Campione di DNA	Coppia di primers	Specificità	Risultato
POL-EXT	Fi-Thio/R1-Thio	Acidithiobacillus	+
		ferrooxidans	
	FEROO458F/EUB1492	Acidithiobacillus	-
	R	ferrooxidans	
	FERRO458F/FERRO147	Acidithiobacillus	-
	3R	ferrooxidans	
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679	Leptospirillum	+
	R		
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606	Sulfobacillus	-
	R		

Tabella 7.5. Risultati ottenuti nelle reazioni di PCR con i campioni di DNA estratti dal sito galleria Rosina, miniera del Pollone (sigla POL). +: esito positivo, -: esito negativo.

I prodotti amplificati così ottenuti e relativi al gene 16S sono stati successivamente sottoposti a sequenziamento diretto. L'analisi delle sequenze ottenute e relative ai quattro siti di studio ha permesso di effettuare una caratterizzazione genetica dei microrganismi identificati. In particolare, nelle gallerie Ribasso del Pianello 2 e Sant'Olga sono stati riscontrati diversi ceppi (cloni geneticamente identici) della specie *Acidithiobacillus ferrooxidans*. Nessuna delle specie batteriche analizzate è stata riscontrata nella galleria Sant'Anna. Nella galleria Rosina della miniera del Pollone sono stati identificati un ceppo di *A. ferrooxidans*, geneticamente diverso da quelli riscontrati nelle gallerie Pianello 2 e Sant'Olga della miniera di M. Arsiccio, ed una specie di *Leptospirillum*. I risultati ottenuti con i campioni della II campagna confermano quelli precedentemente ottenuti nella I campagna.

Le analisi dei campioni finora disponibili (sia della I che della II campagna) sono state estese alla ricerca di altre specie di batteri ferro-ossidanti comunemente riscontrate nei drenaggi acidi di miniera (Acidiamus brierleyi, Acidithiobacillus caldus, Sulfolobus sp., S. solfataricus, S. islandicus, S. shibatae) e di batteri antagonisti, cioè batteri solfato-riduttori (SRB) (Desulfotomaculum sp., Desulfobacter sp.). Questi ultimi, oltre a provocare un aumento del pH, invertono anche il processo di ossidazione del ferro. Sono stati costruiti nuovi primers specifici per queste altre specie batteriche, da utilizzare in esperimenti di amplificazione genica. Le reazioni di amplificazione genica relative a questi nuovi primers non hanno prodotto alcun risultato positivo in nessuno dei campioni analizzati. Ciò suggerisce l'assenza di batteri solfato-riduttori in tutti i siti di studio presi in esame e la presenza esclusiva in essi delle specie di batteri ferro-ossidanti già identificate in precedenza.

In conclusione, per quanto riguarda la comunità microbica procariotica (batteri) identificata nei siti di studio in entrambe le campagne di campionamenti condotte, nella galleria Pianello della miniera di M. Arsiccio sono state riscontrate le specie A. ferrooxidans (individuata nelle pozze di acqua stagnante, nel rigagnolo che attraversa la miniera e all'esterno) e le specie Leptospirillum sp. e Sulfobacillus sp. (entrambe individuate nelle pozze di acqua stagnanti); nella galleria Sant'Olga della miniera di M. Arsiccio la specie batterica più diffusa è A. ferrooxidans (individuata sugli strati superficiali della pirite, negli stillicidi, nel rigagnolo che attraversa la miniera e all'esterno), mentre le specie Leptospirillum sp. e Sulfobacillus sp. risultano localizzate esclusivamente sugli strati superficiali della pirite; nella galleria Sant'Anna della miniera di M. Arsiccio non è stata ritrovata nessuna delle specie batteriche prese in esame; nella galleria Rosina della miniera del Pollone sono state riscontrate le specie A. ferrooxidans (individuata nelle pozze di acqua stagnante e all'esterno) e Leptospirillum sp. (individuata nelle pozze di acqua stagnante).

Sulla base dei risultati ottenuti e relativi alle specie batteriche identificate e alle tipologie di campionamenti in cui sono state riscontrate è possibile ipotizzare le seguenti dinamiche di colonizzazione dei siti minerari di studio.

I microrganismi appartenenti alla specie *A. ferrooxidans* sono presenti in maniera diffusa nelle miniere di M. Arsiccio e del Pollone. Essi sono presenti nei naturali stillicidi, da dove molto probabilmente, trasportati dalle acque che scorrono lungo le pareti laterali delle miniere, colonizzano gli strati superficiali della pirite ivi presente. Trasportati dalle gocce di acqua degli

stillicidi fino a terra, essi possono raggiungere i piccoli rigagnoli di acqua che scorrono lungo i lati della miniera, dove, in particolari siti ed in particolari condizioni ambientali, possono colonizzare delle pozze di acqua stagnante, caratterizzate dalla presenza di materiale di aspetto mucillaginoso e di colore giallastro. Tramite lo scorrimento dell'acqua all'interno delle miniere, tali microrganismi possono raggiungere anche l'esterno, rimanendo confinati nelle immediate vicinanze dell'ingresso delle gallerie, dove, cioè, permangono le condizioni ambientali a loro adatte.

I microrganismi appartenenti alla specie *Leptospirillum* sp. si trovano in aree profonde delle miniere, dove colonizzano gli strati superficiali della pirite presente lungo le pareti e risultano avvolti in un biofilm di colore rosa che si trova sulla superficie dell'acqua che scorre nelle miniere.

I microrganismi appartenenti alla specie *Sulfobacillus* sp. presentano una dinamica di colonizzazione molto simile a quella mostrata dalla specie *A. ferrooxidans*, essendo presenti negli stillicidi naturali, da dove possono colonizzare gli strati superficiali della pirite e le pozze di acqua stagnante presenti all'interno delle miniere. Per ciò che concerne la comunità microbica eucariotica (protisti), anche nei campioni della II campagna sono state rinvenute diverse forme cellulari (simili a quelle già osservate nei campioni della I campagna; si veda la Figura 7.2 della Relazione di Medio Periodo). L'identificazione delle specie è stata limitata alle forme indicate come E1 e E2, ritrovate in diversi campioni analizzati (Tabella 7.6).

	Forma E1	Forma E2
	PIA2-EXT	PIA2-EXT
	PIA2-EXTb	PIA2-EXTb
	PIA2-EXTc	PIA2-EXTc
	PIA2-STL	OLG-EXT
	PIA2-RCK	OLG-EXTb
	PIA2-PLA	ANN-EXT
	OLG-EXT	POL-EXT
	OLG-EXTb	
	OLG-SLMb	
	ANN-STL	
Campioni	ANN-STLb	
Cam	POL-EXT	

Tabella 7.6. Campioni dei siti minerari di studio in cui sono state riscontrate le forme E1 e E2.

Per la forma E1, l'identificazione — che ha previsto l'isolamento di singole cellule individuate per avviare colture mono-clonali da utilizzare come materiale da cui estrarre il DNA — è stata effettuata con un approccio genetico simile a quello utilizzato per la componente procariotica. L'analisi della sequenza ottenuta e relativa al marcatore genetico selezionato (gene 18S) ha permesso di effettuare una caratterizzazione genetica del microrganismo, identificandolo nel protozoo ciliato *Oxytricha acidotolerans* (Figura 7.1). Si tratta di una specie di recente descrizione, rinvenuta in un lago contenente acque provenienti da drenaggi acidi di miniera e situato a Langau (Austria). In condizioni ambientali avverse, questa specie è in grado di formare delle forme di resistenza, denominate "cisti", che consentono al microrganismo di sopravvivere ad ampie variazioni di pH e ad altre condizioni di stress. È stato, infatti, osservato che questa specie è in grado di tollerare valori di pH compresi tra 2.5 e 7, con un valore ottimale di 5.2.

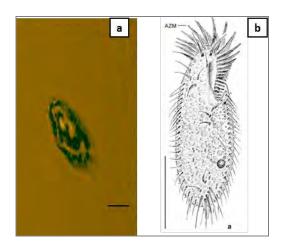


Figura 7.1. Fotografia (a) e schema (b) del protozoo ciliato *Oxytricha acidotolerans* (forma E1), rinvenuto in alcuni campioni dei siti di studio. L'immagine fotografica è stata acquisita tramite microscopio (Leica DMR) munito di obiettivi 25×, 40× e 63× connesso ad una videocamera digitale (Leica DC490) ed elaborata con un software compatibile (Leica IM1000, v.1.0). L'unità di misura corrisponde ad una dimensione di 30 μm.

Per la forma E2, l'identificazione tassonomica è stata basata sul riconoscimento in campioni *in vivo* di alcune caratteristiche morfologiche distintive degli euglenoidi. Tale approccio morfologico ha permesso di identificare la forma nella specie *Euglena mutabilis* (Figura 7.2). Si tratta di un protista fotosintetico comunemente ritrovato in ambienti acquatici acidi, quali torbiere, laghi di origine vulcanica e drenaggi acidi di miniera. Si ritiene che tale protista, attraverso il suo metabolismo fotosintetico, svolga un ruolo importante nella produzione primaria di tali ecosistemi oligotrofici. È

stato, infatti, suggerito che i batteri presenti in tali ecosistemi trasportino e riciclino la maggior parte dei metaboliti secreti da *E. mutabilis*, generalmente rappresentati da aminoacidi, composti poliamminici, urea e alcuni zuccheri. Conseguentemente, *E. mutabilis* può anche contribuire indirettamente alla bio-attenuazione dei drenaggi acidi di miniera, sia cibandosi dei batteri e sia mantenendo le condizioni aerobiche attraverso il suo metabolismo fotosintetico.

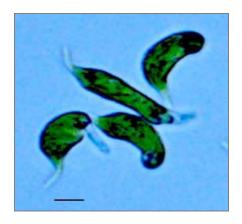


Figura 7.2. Fotografia mostrante alcune cellule del protista fotosintetico *Euglena mutabilis* (forma E2), rinvenuto in alcuni campioni dei siti di studio. L'immagine è stata acquisita tramite microscopio (Leica DMR) munito di obiettivi 25×, 40× e 63× connesso ad una videocamera digitale (Leica DC490) ed elaborata con un software compatibile (Leica IM1000, v.1.0). L'unità di misura corrisponde ad una dimensione di 10 μm.

In conclusione, per quanto riguarda la comunità microbica eucariotica (protisti) identificata nei siti di studio in entrambe le campagne di campionamenti, in tutti e quattro i siti di studio sono state riscontrate entrambe le specie identificate. In particolare, la specie *E. mutabilis* è stata riscontata esclusivamente all'esterno, nelle immediate vicinanze dell'ingresso delle miniere, mentre la specie *O. acidotolerans* è stata ritrovata, oltre che all'esterno, anche all'interno delle miniere, e precisamente negli stillicidi (gallerie Pianello e Sant'Anna della miniera di M. Arsiccio), nelle acque che scorrono lungo le pareti laterali della miniera e nelle pozze di acqua stagnante (galleria Pianello della miniera di M. Arsiccio) e nel rigagnolo che attraversa la miniera (galleria Sant'Olga della miniera di M. Arsiccio).

Sulla base degli esperimenti condotti per valutare il grado di sviluppo (aumento del numero di cellule) di *E. mutabilis* e del conseguente aumento di alcalinizzazione del mezzo di coltura (si veda la Relazione di Medio Periodo, pagg. 109-112), sono state allestite delle colture massive di tale protista fotosintetico. Allo scopo di selezionare il tipo di terreno di coltura più adatto per la crescita

del microrganismo, le colture sono state allestite utilizzando diversi mezzi di coltura e impiegando il sistema di illuminazione costituito da due lampade neon, che nelle prove di laboratorio era risultato quello più efficace. In particolare, sono state allestite tre diverse tipologie di coltura, come di seguito specificato:

- mezzo di coltura costituito da acqua prelevata direttamente da uno dei siti di studio (all'esterno della galleria Rosina della miniera del Pollone), sterilizzata mediante una prima filtrazione, eseguita con carta da filtro qualitativa del diametro di 30 cm (Munktell & Filtrak, Bärenstein, Germania), seguita da una seconda filtrazione, eseguita con filtri per siringa di 0.45 μm;
- mezzo di coltura costituito come 1., con arricchimento di nitrato (NaNO₃) e fosfato (NaH₂PO₄), nelle quantità di 5 mg/L e 2 mg/L, rispettivamente;
- mezzo di coltura sintetico costituito da KH_2PO_4 (1 g/L), MgSO₄ (0,25 g/L), (NH₄)₂SO₄ (0,75 g/L), estratto di lievito (1 g/L), pH 3,4, sterilizzato mediante autoclave.

Per ciascuna tipologia di coltura, sono state inizialmente utilizzate sia beute di vetro che vasche di plastica, entrambe della capacità di 1 litro. I mezzi di coltura (1 L) sono stati inoculati con 1 mL di sospensione cellulare (1.36×10^4 /mL), precedentemente preparata. Le colture sono state incubate a 23 ± 1 °C, con cicli di luce/buio di 12/12 ore e rifornite continuamente di aria attraverso un sistema di aerazione collegato ad un compressore. Periodicamente (ogni 10 giorni), per ogni coltura sono state effettuate sia il conteggio del numero di cellule del microrganismo e sia la misurazione del valore di pH del mezzo di coltura. Al momento le colture sono in fase di ampliamento.

7.2. Proposta di bio-risanamento

La problematica delle acque acide contaminate da metalli pesanti in aree minerarie è assai comune in Europa e in altre parti del mondo. Nel corso degli anni sono stati messi a punto numerosi sistemi di trattamento delle acque contaminate da drenaggi acidi di miniera. Il Dipartimento degli Interni degli Stati Uniti ha creato un apposito ufficio con il ruolo di occuparsi dei trattamenti di tali ecosistemi, l'"Office of Surface Mining Reclamation and Enforcement". Questo ente ha sviluppato un software avente lo scopo di ricercare le migliori soluzioni adatte per ogni specifico sito contaminato da drenaggi acidi di miniera. Dopo aver inserito tutti i dati richiesti (pH, concentrazione dei vari metalli e dei solfati, ecc.), il programma propone una soluzione, con una

valutazione dei costi inclusa. Il software è scaricabile dal sito governativo statunitense al link http://amd.osmre.gov/default.htm.

I trattamenti attualmente esistenti per i drenaggi acidi di miniera vengono suddivisi in sistemi passivi e attivi. I sistemi attivi utilizzano tecnologie che necessitano di monitoraggio, mantenimento, energia e un sistema di infrastruttura più complesso. I sistemi passivi consistono in processi naturali, l'intervento dell'uomo è minimo e le strutture costruite sono tipicamente in materiali naturali (ad es., legno); spesso utilizzano la forza di gravità per garantire il flusso dell'acqua, oltre all'energia solare ed eolica. La scelta del sistema da utilizzare dipende da molti fattori. Devono essere presi in considerazione la topologia del sito su cui bisogna intervenire, la quantità di superficie disponibile, la necessità di manutenzione e di longevità dell'impianto, l'accessibilità e la distanza del sito, la disponibilità di energia, il capitale disponibile, i costi di costruzione e di manutenzione, l'influenza delle condizioni climatiche e la resa del sistema.

Sulla base dei risultati ottenuti nell'identificazione delle specie microbiche presenti nei siti di studio e negli esperimenti condotti in laboratorio per valutare il grado di sviluppo della specie microbica *Euglena mutabilis* e del conseguente aumento di alcalinizzazione del mezzo di coltura e sulla base delle informazioni riportate da altri Autori sull'utilizzo di questa e di altre specie di micro-alghe nei processi di bio-risanamento di ecosistemi a drenaggi acidi di miniera, proponiamo un sistema passivo di trattamento biologico *in situ* delle acque in uscita dalle miniere, mediante l'utilizzo di tale microrganismo, così come di seguito descritto e specificato.

Il sistema proposto consiste nel promuovere lo sviluppo cellulare di *E. mutabilis*, naturalmente presente nei siti di studio (all'esterno, nelle immediate vicinanze dell'ingresso delle miniere), in modo da favorire un'alcalinizzazione biologica delle acque. L'impianto è costituito da due vasche (Figura 7.3). In una prima vasca, chiamata "vasca di alcalinizzazione", di forma variabile e situata all'interno di una struttura coperta, viene confluita in modalità continua e tramite un sistema di canalizzazione acqua proveniente dalle gallerie minerarie. Sul fondo della vasca è presente un biofilm di microrganismi algali, precedentemente costituito. L'acqua presente all'interno della vasca viene continuamente rifornita di aria attraverso un sistema di aerazione collegato ad un compressore. Ad una certa distanza dalla superficie superiore della vasca è presente un sistema di illuminazione costituito da due tipi di lampade al neon, cioè lampada "daylight" (Osram Daylight lamp, 36 W/10) e lampada fluorescente (Osram Fluora lamp, 40 W/77), in numero sufficiente a

coprire l'intera estensione della vasca. Il sistema di illuminazione viene regolato con cicli di luce/buio di 12/12 ore, tramite l'applicazione di un timer. All'interno della struttura ospitante la vasca, la temperatura dell'ambiente viene costantemente mantenuta a 23 °C, tramite un impianto di condizionamento dell'aria installato. Nella vasca di alcalinizzazione, grazie al metabolismo fotosintetico dei microrganismi introdotti, avviene l'alcalinizzazione dell'acqua proveniente dalle miniere. L'acqua proveniente dalla vasca di alcalinizzazione, a sua volta, defluisce, tramite un sistema di canalizzazione collegato ad un'apertura di scarico situata in prossimità della superficie inferiore della vasca e all'estremità opposta rispetto al punto di ingresso dell'acqua, in una seconda vasca chiamata "vasca di sedimentazione". Quest'ultima, di forma variabile, ha il fondo a forma di cuneo in maniera tale da agevolare la sedimentazione dei metalli pesanti, che qui precipitano a causa dell'aumento del pH dell'acqua. La vasca di sedimentazione può essere situata all'aperto, all'esterno della struttura ospitante la vasca di alcalinizzazione, ed in posizione più bassa rispetto alla prima, in maniera tale da sfruttare l'azione della forza di gravità per lo scorrimento dell'acqua dalla prima alla seconda vasca. Da quest'ultima, infine, l'acqua ormai priva della maggior parte dei metalli pesanti può confluire nell'ambiente circostante o in un torrente tramite un sistema di canalizzazione collegato ad un'apertura di scarico situata in prossimità della superficie superiore e all'estremità opposta della vasca rispetto al punto di ingresso dell'acqua. I metalli pesanti precipitati possono essere rimossi attraverso una botola di scarico situata in basso, nella parte incuneata della vasca. Il sistema proposto dovrà essere implementato con i necessari strumenti per la rilevazione dei diversi parametri coinvolti, quali misuratori di pH (dell'acqua sia in entrata che in uscita dalla vasca di alcalinizzazione), misuratori delle concentrazioni dei diversi metalli pesanti (sia nell'acqua in entrata nella vasca di alcalinizzazione che nell'acqua in uscita dalla vasca di sedimentazione).

Per quanto riguarda la scelta dei materiali da costruzione per le due vasche che costituiscono il sistema proposto, frequentemente la selezione (soprattutto nel caso della vasca di alcalinizzazione) avviene con approccio empirico, per tentativi, potendosi utilizzare come supporto per lo sviluppo microbico materiali diversi, quali plastica, poliuretano, cemento, ecc. Infatti, i supporti ad alta porosità possono essere completamente riempiti in conseguenza di un abbondante sviluppo microbico.

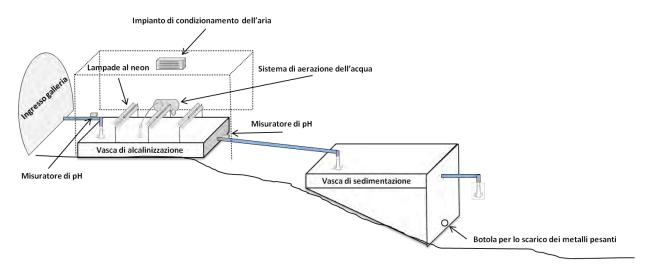


Figura 7.3. Schema del sistema passivo proposto per il trattamento biologico in situ delle acque in uscita dalle miniere.

Il sistema proposto dovrà essere sottoposto a manutenzione periodica. In particolare, sarà necessario effettuare controlli periodici nella vasca di alcalinizzazione, al fine di valutare lo sviluppo microbico e stabilire il momento dell'aggiunta di arricchimento di nutrienti per i microrganismi (nitrato e fosfato), nelle quantità determinate in seguito agli esperimenti condotti in laboratorio. E' altresì necessario controllare lo stato funzionale delle apparecchiature presenti all'interno della struttura ospitante la vasca (sistema di illuminazione costituito dalle lampade al neon, sistema di aerazione dell'acqua, impianto di condizionamento dell'aria, ecc.). Nella vasca di sedimentazione sarà necessario procedere periodicamente alla rimozione dei metalli pesanti precipitati sul fondo. Il sistema proposto è auto-rigenerante, in quanto il biofilm microbico presente sul fondo della vasca di alcalinizzazione sarà continuamente ri-costituito grazie alla riproduzione degli stessi

Il sistema proposto è inoltre auto-regolato, in quanto lo spessore del film cellulare che colonizza il fondo della vasca di alcalinizzazione dipende dal flusso della fase liquida, che esplica un azione abrasiva. In condizioni di flusso costante, come sono quelle che si stabiliscono all'interno della vasca, si instaura un equilibrio tra le cellule che si sviluppano in funzione delle condizioni locali e quelle che sono asportate con costanza dello spessore del film e quindi dell'azione alcalinizzante dello stesso.

microrganismi, che viene favorita dalle condizioni ottimali per la crescita ricreate nella vasca.

Il sistema proposto risulta naturale e privo di impatto negativo sull'ambiente, in quanto basato su microrganismi naturalmente già presenti nei siti minerari di studio, di facile realizzazione e sicuramente più economico rispetto ad altri trattamenti di tipo attivo. Esso, comunque, può essere abbinato ad altri sistemi, che possano contribuire in maniera sinergica al trattamento delle acque acide di miniera.

Il sito potenzialmente candidato per la realizzazione di un impianto pilota è stato individuato nell'area esterna prospiciente l'ingresso della galleria Ribasso del Pollone. Tale area risulta di facile accesso, è vicina al centro abitato ed è già rifornita di energia elettrica, necessaria per il funzionamento del sistema. Per la realizzazione dell'impianto sarà auspicabile la richiesta di una consulenza di tipo bio-ingegneristico, che possa suggerire le caratteristiche ottimali per una più efficace resa del sistema.

Note riassuntive

La presente Relazione Finale, che raccoglie e integra anche i dati e le considerazioni già riportate nelle Relazioni di Breve e Medio Periodo, rappresenta uno strumento conoscitivo, il più dettagliato ed ampio finora disponibile, dello stato di qualità delle matrici ambientali acqua-suolo-pianta nel bacino del Torrente Baccatojo.

In aggiunta, fornisce i risultati di uno studio geologico-strutturale di dettaglio del bacino, con relativa cartografia geologica e idrogeologica derivata. Questi rappresentano strumenti fondamentali nella conoscenza del territorio, nello studio della dinamica dei processi, e come presupposto per la pianificazione degli interventi atti a garantire un adeguato livello di protezione dell'ambiente.

Nel testo sono inoltre evidenziate, con progressivo dettaglio rispetto alle Relazioni precedenti ed in riferimento al contesto geologico e idrogeologico, le sorgenti di contaminazione di elementi potenzialmente tossici (EPT) all'ecosistema, la loro reattività, i fenomeni di rilascio, le dinamiche di mobilizzazione e di dispersione dei contaminanti stessi.

Proprio in relazione alla dispersione degli EPT, è posta ulteriore attenzione alla caratterizzazione della matrice suolo e viene dato rilievo ai processi di traslocazione dal suolo alle piante ed alle parti edibili per una varietà di coltivazioni orticole. Questi dati rappresentano le informazioni di base indispensabili per le necessarie azioni in ambito sanitario per la tutela della salute pubblica.

Il quadro ambientale che deriva dallo studio si riassume schematicamente come segue:

- l'ecosistema costituito dal bacino del Torrente Baccatoio ha subito e subisce attualmente una forte pressione di origine antropica che altera profondamente, in maniera continuativa ed in parte irreversibile, le caratteristiche originarie delle diverse matrici ambientali.
- La pressione antropica sull'ecosistema deriva principalmente dall'attività mineraria che ha caratterizzato il bacino, cessata agli inizi degli anni '90 senza che ne siano seguiti i necessari interventi di riqualificazione e successiva messa in sicurezza ambientale.
- L'impatto maggiore sull'ecosistema è determinato dal rilascio di EPT (tallio in particolare, ma anche cadmio, antimonio, bario, arsenico, alluminio ed altri) attraverso le acque acide che fuoriescono dalle gallerie minerarie in abbandono.
- Le caratteristiche geologico-strutturali del bacino, che ne condizionano l'assetto idrogeologico, e i dati geochimici definiscono estese aree di infiltrazione delle precipitazioni meteoriche nelle

formazioni carbonatiche che caratterizzano i rilievi. Parte delle precipitazioni alimenta corpi idrici all'interno dei carbonati stessi con relative manifestazioni sorgentizie di acque calciobicarbonatiche di buona qualità (anche captate); parte si infiltra attraverso sistemi di fratture e/o gallerie minerarie nei sottostanti litotipi del substrato metamorfico, interagisce con le mineralizzazioni (sia all'interno dell'ammasso roccioso che nelle gallerie minerarie) prendendo in carico quantitativi variabili, in alcuni casi estremamente elevati, di EPT.

- Le diverse caratteristiche geologico-strutturali unitamente alle attuali condizioni delle gallerie e dei vuoti di coltivazione minerari generano una diversa risposta dei sistemi minerari di Monte Arsiccio e Pollone agli eventi meteorici, in particolare a eventi di precipitazioni intense: il sistema di Monte Arsiccio ha, infatti, una elevata reattività al regime delle precipitazioni, che si riflette direttamente nell'andamento della portata e nelle caratteristiche idrochimiche dei drenaggi minerari; il sistema del Pollone è alimentato da zone di infiltrazione distinte rispetto a Monte Arsiccio, circoscritte alla zona mineraria stessa, ed ha una risposta analoga al sistema di Monte Arsiccio in termini di tempo ma mediamente più smorzata rispetto agli eventi meteorici. Il diverso comportamento dei due sistemi minerari ha implicazioni sugli interventi di messa in sicurezza ambientale che dovranno essere pianificati.
- L'analisi del chimismo dei drenaggi e dei valori di portata, ottenuti nel periodo di osservazione dello studio, permettono di stimare un rilascio medio di circa 160 ton/anno e 50 ton/anno di soluto (principalmente ferro e zolfo, ma anche una serie di EPT) dalle gallerie di drenaggio del sistema minerario di Monte Arsiccio e Pollone, rispettivamente. Queste indicazioni, anche se preliminari, devono essere considerate nella pianificazione delle azioni di bonifica e rappresentano il primo contributo alla quantificazione di EPT trasportati dai drenaggi minerari al Torrente Baccatoio.
- Alcuni EPT una volta immessi nelle acque del Torrente Baccatoio attraverso i drenaggi minerari seguono nel loro destino il ciclo del ferro e vengono trattenuti sulla superficie delle particelle solide di idrossidi che si formano per contrasto di acidità e ossigenazione. In questo modo le acque del torrente divengono progressivamente di buona qualità lungo il suo corso per questi contaminanti.
- Il particellato solido, con il suo carico di EPT, viene trasportato dalla corrente e disperso nell'alveo dalla zona mineraria fino alla foce, in maniera differenziata ed in funzione delle condizioni idrodinamiche del torrente. La frazione colloidale più fine del particellato è trasportata in maniera particolarmente efficace e rapida dalle acque, alla stregua di specie disciolta, con un

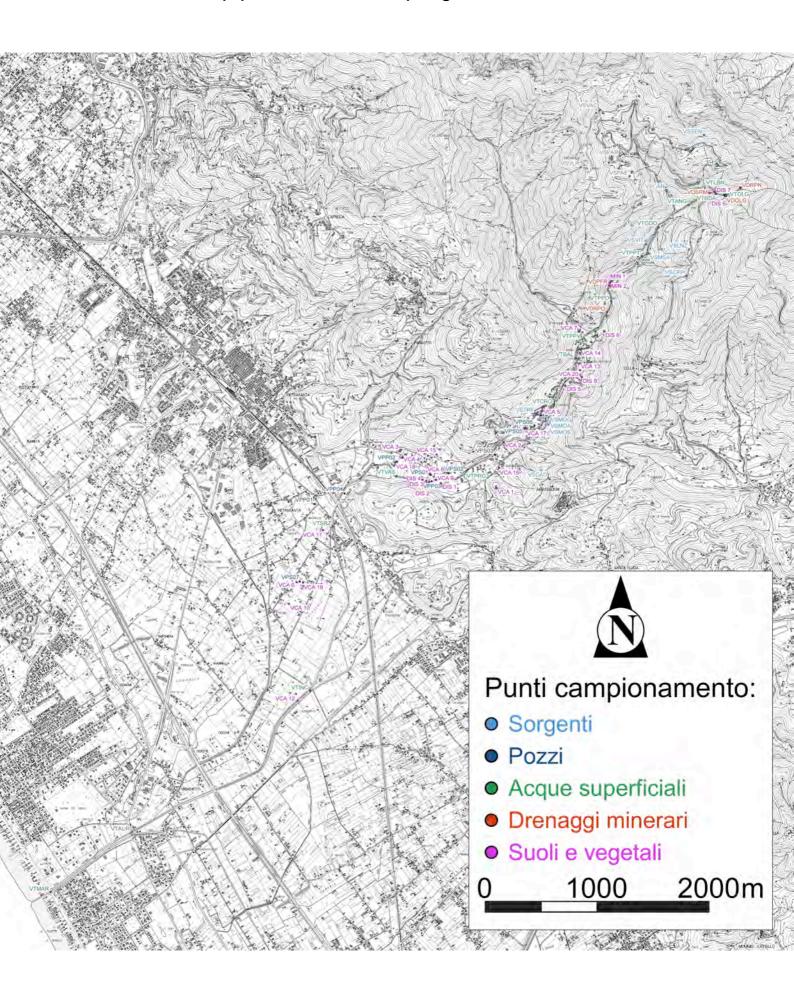
comportamento quasi conservativo che ne permette la rapida infiltrazione nel subalveo e la dispersione. Il ruolo dei colloidi dovrà essere considerato attentamente.

- A differenza di altri EPT il tallio viene solo debolmente trattenuto dal particellato solido e si disperde attraverso le acque superficiali. I dati relativi alle due campagne di campionamento indicano una attenuazione al di sotto della soglia di 2 μg/L prima di raggiungere la foce. Tuttavia è necessario un monitoraggio che ne determini la dispersione in funzione del regime delle portate del torrente, che sono molto variabili e rispondono repentinamente alle piogge, come è stato osservato anche durante il periodo di studio.
- Misure di speciazione del tallio indicano la presenza sia di Tl(II) che di Tl(III) nelle acque del torrente. In particolare, in alcune sezioni del corso d'acqua il Tl(III) è la specie dominante. Questa osservazione è di particolare importanza anche data la diversa solubilità in fase acquosa delle specie del Tl(I) e Tl(III) ed implica la presenza di ossidanti, incluse reazioni mediate da colonie batteriche. Dati preliminari di letteratura mostrano inoltre la maggiore tossicità di Tl(III) rispetto a Tl(I).
- La sorgente Molini di Sant'Anna rappresenta una sorgente di immissione di tallio alle acque del torrente. Allo stato attuale questo non sembra alterare in maniera significativa il bilancio di questo elemento nelle acque, data l'immissione di drenaggi minerari con ben più elevate concentrazioni di tallio. Si sottolinea, inoltre, che la sorgente Molini di Sant'Anna ha bassi valori in soluzione degli altri EPT e quindi mitiga la concentrazione di questi elementi, apportati principalmente dai drenaggi minerari, nel Torrente Baccatoio. Tuttavia, nella prospettiva di risanamento del bacino l'apporto di tallio da parte della sorgente dovrà essere mitigato con trattamenti opportuni.
- Esperimenti di laboratorio hanno evidenziato l'efficacia di una serie di adsorbenti, anche naturali, nella rimozione del tallio dalle acque, confermando dati di letteratura. Questi metodi (ed altri eventuali) dovranno essere presi in considerazione nella prospettiva di bonifica delle acque, con particolare riferimento a quelle della sorgente Molini di Sant'Anna.
- I sedimenti presenti nell'alveo attivo del Torrente Baccatoio, campionati indisturbati in una stazione presa a riferimento, mostrano elevate concentrazioni di EPT differenziate secondo la profondità. Questi EPT sono in parte rimobilizzati dal sedimento alle acque interstiziali presenti nel sedimento stesso. Un orizzonte di sedimento mostra forti analogie di composizione con il materiale fine (contenente anche pirite tallifera) che riempie la vasche di sedimentazione a valle

dell'impianto di flottazione di Rezzaio. Ciò sembra indicare che tale materiale sia stato trasportato e depositato in passato nel torrente. Questo estende le possibili sorgenti di contaminazione e rilascio di tallio anche ad alcune porzioni dell'alveo.

- Le acque negli acquiferi del materasso alluvionale e nelle formazioni sottostanti drenate dai pozzi, pur mostrando nei limiti delle campionature effettuate livelli di concentrazione in EPT inferiori ai valori soglia di contaminazione per le acque sotterranee, sulla base dei dati di portata hanno evidenze di infiltrazione da parte delle acque del Torrente Baccatoio. Queste rappresentano condizioni potenzialmente favorevoli alla diffusione di contaminanti dal torrente alla falda, anche in risposta a particolari condizioni idrologiche e idrodinamiche della falda che possono verificarsi. Questo richiede azioni di monitoraggio. Ci sono altresì evidenze di una possibile risalita diffusa delle acque dagli acquiferi profondi alla sovrastante copertura alluvionale, almeno in alcune aree nella zona di conoide del Torrente Baccatoio.
- Le sorgenti, alcune delle quali captate, presenti nel bacino sono generalmente caratterizzate da acque di buona qualità. Eccezioni sono le acque della sorgente Molini di Sant'Anna, Moresco Alta e Moresco sondaggio che drenano corpi idrici contaminati.
- I suoli nel bacino sono contaminati ai sensi del D.Lgs. 152/2006. L'entità e la distribuzione della contaminazione è variabile per i diversi EPT ed in funzione della esposizione; i suoli maggiormente contaminati si trovano nella parte alta dell'abitato di Valdicastello Carducci.
- La traslocazione dei contaminanti dal suolo alla pianta, in particolare ortaggi, è variabile per i diversi EPT ed è dipendente dalla specie orticola. I suoli di alcune stazioni mostrano particolari criticità per il tallio, che in altre stazioni rimane tuttavia in bassa concentrazione. Viceversa altri EPT, in particolare bario, sono efficacemente traslocati nelle parti aeree edibili delle specie orticole. I dati sulle relazioni di concentrazione suolo-pianta nelle diverse stazioni sono la base per una valutazione georeferenziata degli effetti sanitari per possibile ingestione di EPT.

Raccomandazioni, indicazioni per la messa in sicurezza ambientale, bonifica e ripristino


- L'uso irriguo delle acque del torrente deve rimanere interdetto per evitare l'ulteriore dispersione del particellato contaminato al suolo. Alcune sorgenti non captate (La Vite, Tre Fontane, S. Maria-Canale del Fondo) attualmente rappresentano risorse che appaiono idonee come alternative al torrente per uso irriguo.

- L'emungimento delle acque del conoide del materasso alluvionale mediante pozzi, ad oggi sostanzialmente preservate dalla contaminazione, deve essere monitorato e regolamentato, dato il delicato equilibrio idrochimico che caratterizza un'area contaminata.
- L'intervento prioritario per la messa in sicurezza ambientale deve avere come obiettivo la riduzione del tempo di contatto tra le acque che si infiltrano e circolano nelle gallerie abbandonate e le fasi minerali sorgenti di contaminazione. Questa azione deve essere pianificata in primo luogo per la miniera del Pollone, in cui l'accesso all'area mineraria è più agevole e l'accessibilità alle gallerie minerarie è meno problematica. Le cause di ristagno delle acque nelle gallerie devono essere rimosse (per quanto possibile) con canalizzazioni di scolo e dreni. Questa azione è preventiva ad eventuali trattamenti delle acque in uscita poiché limiterà i quantitativi delle acque da trattare. In questo senso, è inoltre indispensabile rimuovere le paratie degli stramazzi non appena lo studio messo in opera dall'Amministrazione Comunale sulle portate dei drenaggi sarà concluso, in modo che il livello idrico nella parte di gallerie interessata possa abbassarsi e tornare alla situazione preesistente allo studio.
- Gli eventuali interventi per la bonifica delle acque dei drenaggi all'uscita delle gallerie devono tenere conto delle diverse caratteristiche di risposta agli eventi meteorici, e dunque delle diverse caratteristiche di circolazione, delle aree minerarie di Monte Arsiccio e Pollone, in aggiunta alle diverse caratteristiche di chimismo. Le azioni da intraprendere dovrebbero altresì prevedere il coinvolgimento delle diverse competenze, e trarre spunto da analoghi interventi effettuati nel territorio nazionale e all'estero, in modo da garantire la massima efficacia. A tal riguardo, si propone di considerare anche interventi di trattamento biologico delle acque di drenaggio della tipologia descritta nel Capitolo 7.
- I dati riportati nella presente Relazione evidenziano come molti degli EPT nelle acque del Torrente Baccatoio subiscano una naturale attenuazione associata alla precipitazione di idrossidi di ferro e si partizionino così dalla fase acquosa al particellato solido. I modelli indicano che la formazione del particellato, a partire dalla immissione delle acque dei drenaggi in quelle del torrente, avviene rapidamente. Nel caso di interventi di bonifica da eseguirsi direttamente sulle acque del torrente, questo fenomeno deve essere considerato. Azioni conseguenti potrebbero considerare la rimozione del particellato tramite scaricatori a vortice o altri impianti.

- La sorgente Molini di Sant'Anna è la sola a richiedere un trattamento delle acque mirato alla rimozione del tallio. Esiste per questo una serie di applicazioni (alcuni dei metodi sono stati oggetto di sperimentazione anche nella presente relazione) e specifici impianti di trattamento industriale sono già disponibili.
- Per quanto concerne i suoli è necessaria un'estensione dello studio a tutti i terreni coltivati e non della vallata di Valdicastello e della zona della piana in un congruo intorno del Torrente Baccatoio, in modo da giungere alla definizione degli ambiti agricoli rilevati in classi di vulnerabilità in funzione del grado di contaminazione del suolo e del grado di trasferibilità nei prodotti vegetali coltivati. Su questa base possono essere intraprese azioni che limitano la traslocazione dei contaminanti dal suolo alle colture, e la pianificazione dell'uso di tecniche di *phytomining* basate sulla capacità attitudinale di alcune piante (es.: *Iberis intermedia* e *Biscutella laevigata*) ad estrarre elevati contenuti di EPT (es.: tallio) dal suolo.
- Per le discariche minerarie si ritiene necessaria una messa in sicurezza in situ, cui far seguire una possibile rinaturalizzazione mediante tecniche di ingegneria naturalistica, ed infine una distribuzione di materiale terrigeno atto ad accelerare od innescare i processi pedogenetici per favorire in tempi brevi la formazione di coltri vegetali erbacee ed arbustive anche attraverso la formazione di aggregati stabili mediante la tecnica delle "terre ricostituite". Ciò potrà essere fatto a seguito di una approfondita caratterizzazione dei materiali di discarica e delle relative acque di circolazione. Trattandosi peraltro di discariche, tutte le attività di bonifica e la loro efficacia dovrà essere continuamente controllata mediante adeguata attività di monitoraggio.

Appendice A Stazioni di campionamento

Appendice A (pag. 1 di 2)

Appendice A (pag. 2 di 2)

Dati analitici acque e sedimenti

Parametri chimico-fisici e ioni maggiori

Appendice B1 (pag. 1 di 2)

		I Campagna																
Sigla	Tipologia	Data gg/mm/aa	T acqua (°C)	T aria (°C)	рН	Eh (V)	EC (μS/cm a 20°)	O ₂ (mg/L)	O ₂ (sat. %)	HCO ₃ (mg/L)	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	CI (mg/L)	NO ₃ (mg/L)	SO ₄ (mg/L)	SiO ₂ (mg/L)
VSSEN	Sorgente non captata	28/04/2015	10.8	12.9	7.33	0.20	417	nd	nd	250	4.1	0.38	78	3.5	12.0	nd	4.8	2.07
VSFSA	Sorgente non captata	28/04/2015	10.7	nd	7.82	0.22	352	nd	nd	207	4.6	0.43	60	5.9	8.4	2.50	4.2	2.10
VSVAC	Sorgente non captata	28/04/2015	10.7	13.6	7.70	0.22	397	nd	nd	244	4.8	0.30	70	5.2	8.4	0.77	5.6	2.14
VSVIT	Sorgente non captata	28/04/2015	12.7	nd	7.80	0.20	382	nd	nd	189	10.3	1.53	57	7.2	14.3	1.80	23.4	5.1
VSVLR	Sorgente non captata	28/04/2015	11.0	nd	7.34	0.22	426	nd	nd	268	4.0	0.33	84	2.15	5.7	0.28	3.9	1.77
VSDAD	Sorgente non captata	28/04/2015	13.8	nd	7.47	0.23	547	nd	nd	244	17.3	11.2	87	4.1	22.8	30.0	24.4	7.0
VSTRF	Sorgente non captata	28/04/2015	15.9	15.9	7.89	0.16	368	8.46	98.7	232	8.5	1.07	73	5.6	19.4	7.7	15.9	7.5
VSMSA	Sorgente non captata	28/04/2015	12.0	nd	6.98	nd	474	nd	nd	165	4.6	0.81	67	16.8	12.7	2.20	90	3.23
VSPAR	Sorgente captata	29/04/2015	12.2	15.8	7.49	nd	325	6.70	78.4	256	7.5	1.45	72	5.5	11.4	3.00	7.9	4.8
VSPAE	Sorgente captata	29/04/2015	11.9	15.8	7.84	nd	333	8.24	84.6	238	6.4	1.37	77	2.80	11.5	2.78	8.4	4.2
VSCAN	Sorgente captata	29/04/2015	12.7	nd	8.19	nd	259	7.71	80.3	153	6.0	5.0	46	8.2	15.2	2.00	17.0	4.6
VSLNZ	Sorgente captata	29/04/2015	12.1	18.5	8.05	nd	269	8.95	77.4	207	5.7	0.48	69	12.8	17.8	1.60	39	3.12
VSMOG	Sorgente captata	29/04/2015	16.3	19.5	7.54	0.09	566	7.15	77.6	250	8.6	1.27	120	13.1	18.2	3.6	143	8.5
VSMOA	Sorgente captata	29/04/2015	14.5	21.1	7.87	nd	401	8.34	85.0	193	9.1	1.43	77	9.2	19.9	4.0	54	5.0
VSMOS	Sorgente captata	29/04/2015	14.6	nd	7.63	nd	400	7.90	81.6	171	9.5	1.98	94	10.7	20.0	3.31	52	4.7
VSCRP	Sorgente captata	29/04/2015	12.3	14.9	8.11	nd	313	6.90	76.0	214	5.3	0.99	62	8.7	12.0	1.60	8.0	3.6
VPP02	Pozzo	28/04/2015	16.8	20.6	7.51	0.11	473	7.27	75.7	293	29.3	2.78	69	16.2	23.4	13.7	22.4	7.0
VPS01	Pozzo	28/04/2015	15.2	17.0	7.60	0.12	454	8.14	88.3	226	14.6	7.9	89	11.7	20.3	5.3	96	4.7
VPP03	Pozzo	28/04/2015	16.3	15.6	7.60	0.13	452	5.65	57.8	220	14.0	3.4	80	14.0	26.7	6.5	63	9.9
VPS02	Pozzo	28/04/2015	14.8	15.7	7.69	0.14	477	7.36	73.5	220	8.2	3.09	93	11.8	18.5	5.2	102	4.4
VPS06	Pozzo	28/04/2015	16.5	15.8	7.57	0.15	464	6.83	70.3	238	18.0	7.2	86	8.9	16.3	15.9	61	6.8
VPS03	Pozzo	28/04/2015	16.4	16.3	7.29	0.13	539	4.57	44.6	250	9.7	2.61	102	13.4	20.3	8.6	109	10.7
VPS07	Pozzo	29/04/2015	16.8	22.6	7.74	nd	568	6.03	66.6	317	10.5	3.3	113	17.7	19.6	10.5	101	13.5
VPP01	Pozzo	28/04/2015	16.0	17.7	7.85	0.13	450	8.47	86.0	201	12.1	5.5	88	9.2	22.1	10.3	68	6.2
VPP04	Pozzo	28/04/2015	21.1	17.4	7.66	0.08	443	7.86	85.0	183	10.7	1.50	85	10.3	18.6	3.31	52	4.1
VPS05	Pozzo	nc	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
VTMAR	Acque superficiali	27/04/2015	18.4	16.2	7.71	0.10	1515	4.10	44.0	281	129	24.0	99	31.9	292	12.6	75	8.6
VTAUR	Acque superficiali	27/04/2015	18.5	17.2	7.72	0.09	874	4.63	49.0	244	57	16.8	89	18.5	112	13.9	75	7.0
VTBDA	Acque superficiali	27/04/2015	12.3	14.2	2.80	nd	1479	8.24	85.5	nd	4.6	5.8	115	36	11.8	3.8	798	3.10
VTLBN	Acque superficiali	27/04/2015	12.6	14.2	8.28	nd	168	7.74	80.4	79	5.9	3.7	24.5	3.6	10.6	2.38	13.9	7.2
VTANG	Acque superficiali	27/04/2015	11.8	nd	2.78	nd	1256	nd	nd	nd	4.3	1.45	80	24.9	8.2	3.6	589	5.4
VTPPT	Acque superficiali	27/04/2015	12.2	nd	6.97	nd	324	nd	nd	55	5.9	1.58	57	12.6	11.3	3.20	151	1.64
VTPPV	Acque superficiali	27/04/2015	13.9	16.5	7.90	0.16	461	8.48	85.8	31	7.2	2.01	73	17.6	12.8	1.90	223	1.54
VTBAL	Acque superficiali	27/04/2015	14.1	16.0	8.02	0.13	485	8.89	90.0	61	9.2	0.67	74	17.5	12.6	1.60	195	2.28
VTCRO	Acque superficiali	27/04/2015	14.7	16.2	7.89	0.15	428	8.26	82.1	73	7.4	1.19	68	16.2	12.7	3.4	173	1.90
VTPRG	Acque superficiali	27/04/2015	15.2	17.4	7.98	0.12	433	8.70	89.0	153	9.7	1.60	77	12.1	15.3	2.70	113	3.02
VTVAS	Acque superficiali	27/04/2015	15.4	18.5	8.07	0.18	406	8.71	87.6	153	9.0	1.87	72	11.0	13.7	2.80	94	2.27
VTSRZ	Acque superficiali	27/04/2015	15.3	16.7	8.17	0.12	428	8.20	82.2	183	9.2	2.21	76	11.1	16.7	3.80	92	4.1
VTINC	Acque superficiali	27/04/2015	15.2	16.8	8.11	0.12	413	7.85	79.0	159	10.5	1.19	74	9.8	16.4	4.5	71	3.7
VTOLG	Acque superficiali	27/04/2015	11.6	nd	2.51	nd	2255	nd	nd	nd	8.8	0.85	nd	nd	11.2	3.23	1415	18.1
VTGDO	Acque superficiali	27/04/2015	12.2	nd	6.10	nd	418	nd	nd	15	4.4	2.27	55	11.2	7.7	3.10	170	2.28
VTPPO	Acque superficiali	27/04/2015	13.7	nd	7.83	nd	403	8.07	83.2	98	7.2	0.89	97	5.9	11.8	1.56	144	3.31
VDRPN	Drenaggio minerario	12/05/2015	12.9	19.4	2.48	0.54	2538	5.16	63.6	nd	7.5	0.97	186	61	11.7	< 1	1983	12.8
VDOLG	Drenaggio minerario	12/05/2015	12.5	18.7	1.89	0.60	3337	5.10	66.5	nd	5.9	0.99	320	149	18.3	< 1	3809	29.0
VDSRM	Drenaggio minerario	12/05/2015	13.8	23.0	1.63	0.54	6395	2.40	28.7	nd	5.3	4.5	248	140	14.7	< 1	7943	10.8
VDPFR	Drenaggio minerario	12/05/2015	16.0	22.2	4.47	0.26	681	7.91	87.6	nd	9.3	7.2	116	25.6	27.3	<1	399	11.4
VDRPO	Drenaggio minerario	12/05/2015	13.1	15.6	1.92	0.60	4956	4.82	52.6	nd	9.3	4.7	140	28.1	23.6	<1	5795	19.0

Appendice B1 (pag. 2 di 2)

		II Campagna																
Sigla	Tipologia	Data gg/mm/aa	T acqua (°C)	T aria (°C)	рН	Eh (V)	EC (μS/cm a 20°)	O ₂ (mg/L)	O ₂ (sat. %)	HCO ₃ (mg/L)	Na (mg/L)	K (mg/L)	Ca (mg/L)	Mg (mg/L)	Cl (mg/L)	NO ₃ (mg/L)	SO ₄ (mg/L)	SiO ₂ (mg/L)
VSSEN	Sorgente non captata	16/10/2015	12.5	8.2	7.75	nd	309	9.20	91.5	253	5.4	0.30	74	3.3	10.6	0.87	3.8	1.36
VSFSA	Sorgente non captata	16/10/2015	10.9	8.6	7.90	nd	262	10.00	97.0	192	5.1	0.43	56	6.2	8.8	3.5	3.6	2.40
VSVAC	Sorgente non captata	16/10/2015	12.6	8.7	7.90	nd	278	9.50	97.5	212	5.8	0.35	60	6.2	11.0	1.52	7.2	2.92
VSVIT	Sorgente non captata	16/10/2015	13.8	12.3	7.79	nd	298	10.03	98.5	176	7.9	1.18	59	8.5	12.1	5.1	21.6	4.4
VSVLR	Sorgente non captata	16/10/2015	12.6	9.1	7.02	nd	324	9.40	96.1	262	5.1	0.19	82	2.1	5.4	0.27	3.4	2.40
VSDAD	Sorgente non captata	16/10/2015	16.2	15.1	7.52	nd	429	9.76	98.1	244	15.8	7.9	86	4.3	19.2	29.6	22.7	5.0
VSTRF	Sorgente non captata	16/10/2015	16.2	16.4	7.56	nd	345	9.30	94.2	215	11.3	1.10	70	6.2	18.9	6.9	15.8	6.5
VSMSA	Sorgente non captata	16/10/2015	13.2	12.7	7.52	nd	314	10.02	97.0	184	5.8	0.60	62	10.1	9.7	4.2	43	3.08
VSPAR	Sorgente captata	16/10/2015	11.6	nd	6.93	0.08	422	8.00	72.9	238	7.3	1.19	69	6.0	11.0	4.6	9.4	3.7
VSPAE	Sorgente captata	16/10/2015	11.2	nd	7.07	0.06	416	8.52	78.1	238	6.2	0.49	76	3.0	10.1	1.75	6.7	2.65
VSCAN	Sorgente captata	16/10/2015	11.8	nd	7.38	0.08	332	7.77	71.1	159	8.1	0.85	47	7.6	12.9	4.6	14.3	3.29
VSLNZ	Sorgente captata	16/10/2015	11.5	nd	7.57	0.06	429	9.01	81.7	207	7.4	nd	64	11.4	13.5	2.41	35	3.23
VSMOG	Sorgente captata	16/10/2015	15.7	nd	7.29	0.07	740	6.38	64.2	235	10.4	0.84	124	14.4	14.9	2.43	169	8.3
VSMOA	Sorgente captata	16/10/2015	14.7	nd	7.29	0.06	534	7.89	76.0	207	8.9	1.20	82	11.6	14.5	6.3	74	4.0
VSMOS	Sorgente captata	16/10/2015	14.8	nd	7.37	0.08	534	7.00	69.0	210	8.7	1.33	82	11.5	14.6	6.1	74	3.5
VSCRP	Sorgente captata	16/10/2015	11.4	nd	7.50	0.07	368	8.52	78.2	207	6.9	0.72	56	8.4	13.0	2.05	6.0	2.23
VPP02	Pozzo	20/10/2015	16.7	16.1	7.15	nd	441	8.53	87.5	311	14.5	1.84	96	5.6	23.6	12.6	18.0	7.9
VPS01	Pozzo	20/10/2015	20.1	17.6	7.52	nd	489	8.30	90.5	236	11.8	3.7	100	11.8	15.4	3.8	106	6.2
VPP03	Pozzo	20/10/2015	16.5	18.0	7.46	nd	435	5.45	57.5	251	15.8	1.92	79	13.3	25.4	4.9	58	10.7
VPS02	Pozzo	20/10/2015	18.0	17.3	7.32	nd	484	6.48	67.5	236	13.2	3.4	99	12.1	16.9	3.9	109	6.2
VPS06	Pozzo	20/10/2015	17.2	17.8	7.45	nd	493	6.70	70.0	271	13.6	4.1	102	9.6	17.7	21.1	76	7.3
VPS03	Pozzo	20/10/2015	16.7	17.3	7.35	nd	496	3.40	35.5	236	13.0	1.55	100	13.2	19.4	6.0	108	9.2
VPS07	Pozzo	20/10/2015	20.7	16.5	7.30	nd	545	2.72	27.8	320	13.3	2.27	113	17.2	18.3	8.1	104	9.8
VPP01	Pozzo	20/10/2015	15.7	12.8	7.42	nd	449	9.65	95.7	257	12.6	2.19	90	9.2	20.0	7.5	68	6.2
VPP04	Pozzo	20/10/2015	17.9	12.1	7.13	nd	437	8.10	84.7	196	10.8	2.09	88	10.2	16.2	5.7	93	5.5
VPS05	Pozzo	20/10/2015	18.0	19.4	6.87	nd	476	6.80	71.0	275	18.4	7.1	93	7.2	20.6	20.0	53	10.1
VTMAR	Acque superficiali	22/10/2015	12.5	nd	7.35	0.07	3430	3.75	36.0	299	486	24.3	107	66	830	13.7	171	7.9
VTAUR	Acque superficiali	22/10/2015	15.7	nd	7.43	0.07	3649	4.10	40.5	348	509	24.8	111	70	879	18.2	178	7.1
VTBDA	Acque superficiali	22/10/2015	8.3	nd	3.16	0.07	2369	nd	nd	nd	6.8	0.66	285	106	10.1	2.23	1301	11.0
VTLBN	Acque superficiali	22/10/2015	9.4	nd	6.19	0.21	346	5.74	50.7	98	11.8	0.74	44	7.2	23.0	nd	53	4.1
VTANG	Acque superficiali	22/10/2015	10.9	12.5	2.80	0.75	2370	9.65	91.1	nd	7.3	0.91	269	104	9.7	2.61	1880	12.2
VTPPT	Acque superficiali	22/10/2015	12.3	10.9	7.65	nd	460	10.02	97.7	171	6.9	0.64	86	23.4	9.9	2.15	164	4.2
VTPPV	Acque superficiali	22/10/2015	12.4	nd	7.24	0.24	623	7.39	68.6	110	7.2	0.85	82	22.7	11.8	nd	215	2.78
VTBAL	Acque superficiali	22/10/2015	10.4	nd	8.17	0.07	600	8.73	77.8	119	10.9	0.66	78	21.2	12.5	7.5	186	2.78
VTCRO	Acque superficiali	22/10/2015	14.7	18.0	6.80	nd	445	9.59	94.0	131	7.7	1.00	82	20.4	11.4	2.01	199	2.68
VTPRG	Acque superficiali	22/10/2015	15.6	17.8	7.48	nd	416	8.87	88.6	238	nd	nd	nd	nd	14.1	3.5	104	5.0
VTVAS	Acque superficiali	05/11/2015	nd	nd	7.50	nd	503	9.34	105.0	209	9.5	1.46	85	13.3	13.5	3.5	99	4.2
VTSRZ	Acque superficiali	22/10/2015	11.0	nd	8.34	0.06	567	9.03	82.5	183	9.6	1.11	84	13.6	15.3	2.73	124	4.3
VTINC	Acque superficiali	22/10/2015	11.4	nd	7.47	0.02	676	3.55	32.3	229	32.7	3.08	89	14.6	37	1.52	106	4.8
VTOLG	Acque superficiali	22/10/2015	8.9	nd	2.85	0.58	2797	7.74	65.7	nd	7.3	0.68	290	111	12.8	nd	1600	16.1
VTGDO	Acque superficiali	22/10/2015	10.6	11.3	3.05	0.74	1711	10.40	96.8	nd	7.4	1.14	198	69	11.0	2.97	740	9.8
VTPPO	Acque superficiali	22/10/2015	11.4	11.7	7.07	nd	447	10.48	98.1	174	7.3	1.18	85	23	10.4	2.06	163	3.9
VDRPN	Drenaggio minerario	21/10/2015	14.1	15.8	2.47	0.69	3800	2.44	25.0	nd	8.3	1.01	236	110	10.4	nd	3500	24.1
VDOLG	Drenaggio minerario	21/10/2015	11.2	12.0	2.68	0.80	3100	8.70	83.5	nd	6.3	0.69	335	145	11.2	nd	2450	29.0
VDSRM	Drenaggio minerario	21/10/2015	12.5	11.5	2.38	0.74	3500	6.65	65.5	nd	6.5	7.3	321	143	9.7	2.57	3300	16.7
VDPFR	Drenaggio minerario	nc	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
VDRPO	Drenaggio minerario	21/10/2015	12.4	12.7	2.49	0.72	4080	3.60	36.5	nd	11.2	2.36	154	27.2	15.5	nd	3150	25.2
VUNPU	prenaggio minerano	21/10/2015	12.4	12.7	۷.43	0.72	4000	3.00	30.3	Hu	11.2	2.30	134	۷۱.۷	13.3	IIU	2130	ZJ.Z

Elementi in traccia

Appendice B2 (pag. 1 di 2)

													I Campa	igna												
	Data	Li	Be	В	Al	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	As	Se	Sr	Мо	Ag	Cd	Sn	Sb	Ва	TI	Pb	Th	u
Sigla	gg/mm/aa	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
VSSEN	28/04/2015	0.24	< 0.01	< 10	< 20	0.17	0.07	0.59	30.6	0.15	4.0	6.1	< 20	0.17	0.55	96	0.21	0.05	0.02	0.04	0.18	9.4	0.04	0.27	0.01	0.12
VSFSA	28/04/2015	0.21	< 0.01	< 10	< 20	0.18	0.08	0.52	25.3	0.12	2.94	< 4	< 20	0.18	0.51	67	< 0.1	0.01	< 0.01	0.02	0.14	12.5	0.03	0.11	< 0.01	0.13
VSVAC	28/04/2015	0.29	< 0.01	< 10	< 20	0.10	0.09	1.64	33.0	0.15	3.7	< 4	< 20	0.17	< 0.5	72	0.12	< 0.01	0.35	0.02	0.22	35	0.05	0.24	< 0.01	0.15
VSVIT	28/04/2015	0.29	< 0.01	< 10	< 20	0.06	0.10	1.85	36	0.11	3.07	< 4	< 20	3.4	0.56	107	0.91	0.01	0.06	0.03	0.95	105	0.07	0.34	< 0.01	0.60
VSVLR	28/04/2015	0.31	< 0.01	< 10	< 20	0.14	0.09	0.24	29.3	0.15	4.2	< 4	< 20	0.23	0.50	52	< 0.1	< 0.01	< 0.01	0.01	0.11	5.1	0.03	< 0.1	< 0.01	0.05
VSDAD	28/04/2015	0.49	< 0.01	55	< 20	0.33	0.48	2.97	48	0.17	4.1	< 4	< 20	0.32	0.83	72	0.21	0.02	0.02	0.03	0.08	20.1	0.04	0.31	< 0.01	0.21
VSTRF	28/04/2015	0.44	< 0.01	10.7	< 20	0.31	0.42	0.07	27.5	0.13	3.4	< 4	< 20	0.22	1.03	76	0.20	< 0.01	< 0.01	0.02	0.05	17.5	0.02	1.89	< 0.01	0.33
VSMSA	28/04/2015	0.90	< 0.01	< 10	33.3	0.04	0.15	104	106	0.62	8.1	< 4	< 20	0.37	0.50	104	0.29	< 0.01	0.14	0.03	0.42	66	14.1	0.27	< 0.01	0.37
VSPAR	29/04/2015	0.12	< 0.01	< 10	< 20	0.16	0.20	0.09	25.6	0.13	3.28	< 4	< 20	0.24	0.84	65	< 0.1	< 0.01	0.01	0.01	0.17	48	0.02	< 0.1	< 0.01	0.15
VSPAE	29/04/2015	0.09	< 0.01	< 10	< 20	0.17	0.15	0.09	30.0	0.15	3.9	< 4	< 20	0.33	0.57	54	< 0.1	< 0.01	< 0.01	< 0.01	0.15	8.5	0.02	0.10	< 0.01	0.08
VSCAN	29/04/2015	0.15	< 0.01	10.5	< 20	0.12	0.09	0.13	16.9	0.09	2.13	< 4	< 20	2.78	0.82	104	1.22	< 0.01	0.04	< 0.01	0.38	94	0.04	< 0.1	< 0.01	0.89
VSLNZ	29/04/2015	0.34	< 0.01	< 10	< 20	0.09	0.11	0.32	25.8	0.12	3.07	< 4	< 20	0.36	0.90	74	0.19	< 0.01	< 0.01	< 0.01	0.18	80	0.03	0.10	< 0.01	0.24
VSMOG	29/04/2015	1.45	< 0.01	11.0	< 20	0.24	0.34	0.10	44	0.20	5.3	< 4	< 20	0.44	0.94	917	0.79	< 0.01	0.02	< 0.01	0.32	25.6	0.08	0.10	< 0.01	0.29
VSMOA	29/04/2015	0.49	< 0.01	13.9	< 20	0.08	0.22	0.39	25.4	0.16	4.1	< 4	36	0.42	0.56	116	0.22	0.02	0.19	0.01	1.82	33.1	0.73	0.13	0.01	0.25
VSMOS	29/04/2015	0.49	< 0.01	14.7	< 20	0.08	0.19	0.33	31.7	0.15	4.0	< 4	30.0	0.43	0.88	116	0.19	0.15	0.19	< 0.01	1.83	32.9	0.74	< 0.1	< 0.01	0.25
VSCRP	29/04/2015	0.11	< 0.01	< 10	< 20	0.23	0.15	0.27	27.1	0.12	2.93	< 4	< 20	0.29	< 0.5	65	< 0.1	< 0.01	< 0.01	< 0.01	0.11	15.7	0.02	0.13	< 0.01	0.21
VPP02	28/04/2015	0.77	< 0.01	23.2	< 20	0.24	0.35	0.32	29.5	0.16	4.0	< 4	< 20	0.60	0.92	80	0.18	< 0.01	< 0.01	< 0.01	0.14	40	0.05	0.14	< 0.01	0.27
VPS01	28/04/2015	0.76	< 0.01	11.1	< 20	0.07	0.13	0.99	42	0.14	4.0	4.7	55	1.86	0.78	251	0.39	0.02	0.02	< 0.01	2.28	67	0.06	0.19	< 0.01	0.36
VPP03	28/04/2015	2.61	< 0.01	10.5	< 20	0.12	0.12	1.63	67	0.11	2.90	< 4	< 20	2.82	0.87	713	0.37	0.03	0.04	0.01	0.34	103	0.11	< 0.1	0.02	0.34
VPS02	28/04/2015	0.93	< 0.01	12.6	< 20	0.09	0.12	0.34	32.8	0.14	3.7	< 4	< 20	1.75	0.71	437	0.35	0.03	0.06	< 0.01	2.12	72	0.14	0.17	< 0.01	0.40
VPS06	28/04/2015	0.64	< 0.01	32.5	< 20	0.17	0.33	1.22	28.9	0.16	3.5	< 4	403	3.9	0.89	172	0.53	< 0.01	0.07	< 0.01	1.02	133	0.75	0.51	< 0.01	0.30
VPS03	28/04/2015	2.32	< 0.01	15.4	< 20	0.10	0.16	0.56	29.8	0.15	3.8	< 4	< 20	1.87	0.76	885	0.40	< 0.01	0.03	< 0.01	0.41	98	0.20	0.31	< 0.01	0.54
VPS07	29/04/2015	1.62	< 0.01	67	< 20	0.48	0.61	1.55	41	0.18	5.3	< 4	63	0.31	1.22	158	0.29	< 0.01	0.04	< 0.01	0.28	89	0.05	0.25	< 0.01	0.79
VPP01	28/04/2015	0.35	< 0.01	23.9	< 20	0.15	0.24	0.25	27.6	0.21	3.7	< 4	25.9	1.76	0.78	157	0.30	0.01	0.04	< 0.01	1.22	110	0.17	0.22	< 0.01	0.31
VPP04	28/04/2015	0.40	< 0.01	16.6	< 20	0.14	0.25	0.52	36	0.17	4.6	< 4	< 20	2.46	0.73	163	0.49	< 0.01	0.05	0.04	1.92	93	0.12	0.23	< 0.01	0.38
VPS05	nc	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd							
VTMAR	27/04/2015	7.8	< 0.01	117	< 20	1.26	0.15	223	47	0.69	6.3	8.7	< 20	7.3	0.51	604	1.40	0.03	0.02	0.02	1.06	29.4	0.30	0.41	< 0.01	0.38
VTAUR	27/04/2015	4.4	< 0.01	62	< 20	0.88	0.13	155	47	0.92	5.9	4.4	27.2	6.2	< 0.5	361	0.81	0.02	0.03	0.02	1.85	38	1.06	0.69	< 0.01	0.32
VTBDA	27/04/2015	7.1	0.22	< 10	1558	1.47	5.4	967	92938	7.1	69	15.5	269	96	1.50	371	0.43	0.40	1.55	0.08	4.0	27.3	64	17.9	0.66	2.04
VTLBN	27/04/2015	0.19	< 0.01	< 10	74	0.29	0.11	11.5	48	0.12	2.40	1.77	< 20	4.0	0.54	44	0.17	0.07	0.13	0.01	0.74	57	0.09	0.33	< 0.01	0.08
VTANG	27/04/2015	3.6	0.15	< 10	1169	0.81	2.75	691	79755	6.0	37	15.5	163	34	1.86	231	< 0.1	0.08	1.35	0.03	1.78	56	41	10.3	1.84	2.49
VTPPT	27/04/2015	0.87	< 0.01	< 10	< 20	0.01	0.07	77	29.8	0.34	4.2	< 4	< 20	0.15	< 0.5	91	< 0.1	0.06	0.05	0.03	0.19	32.6	9.3	0.32	0.03	0.01
VTPPV	27/04/2015	1.61	< 0.01	< 10	< 20	< 0.01	< 0.01	171	21.8	1.73	9.2	< 4	77	0.16	0.58	138	< 0.1	< 0.01	0.93	< 0.01	0.72	69	18.3	< 0.1	< 0.01	< 0.01
VTBAL	27/04/2015	1.46	< 0.01	< 10	< 20	< 0.01	0.01	83	18.9	0.97	6.1	< 4	22.6	0.23	< 0.5	134	0.21	< 0.01	0.35	< 0.01	1.69	53	14.8	< 0.1	< 0.01	0.14
VTCRO	27/04/2015	1.29	< 0.01	< 10	< 20	< 0.01	0.02	59	21.3	0.63	5.0	< 4	< 20	0.25	< 0.5	119	0.26	< 0.01	0.22	0.01	1.81	46	13.6	< 0.1	< 0.01	0.21
VTPRG	27/04/2015	1.02	< 0.01	< 10	< 20	< 0.01	0.12	22.1	19.9	0.37	4.4	< 4	< 20	0.38	< 0.5	149	0.26	< 0.01	0.16	< 0.01	1.66	44	5.9	< 0.1	< 0.01	0.28
VTVAS	27/04/2015	0.95	< 0.01	< 10	< 20	< 0.01	0.11	12.4	24.2	0.29	4.1	< 4	< 20	0.51	0.57	143	0.28	0.02	0.13	0.01	1.70	45	4.8	0.13	< 0.01	0.32
VTSRZ	27/04/2015	0.89	< 0.01	< 10	< 20	0.01	0.11	2.76	26.4	0.19	4.3	< 4	< 20	0.70	< 0.5	166	0.29	< 0.01	0.07	< 0.01	1.79	44	4.3	< 0.1	< 0.01	0.34
VTINC	27/04/2015	0.84	< 0.01	< 10	< 20	0.03	0.13	17.1	37	0.20	3.9	< 4	21.5	0.83	0.52	145	0.29	< 0.01	0.05	0.01	1.45	48	3.24	0.17	< 0.01	0.34
VTOLG	27/04/2015	12.0	0.43	< 10	2497	3.3	6.6	1406	164973	9.5	101	22.6	404	197	3.4	547	< 0.1	0.26	2.92	0.02	9.6	23.7	93	24.4	0.95	3.8
VTGDO	27/04/2015	1.21	< 0.01	< 10	< 20	< 0.01	0.04	199	185	1.63	10.5	< 4	< 20	0.22	< 0.5	103	< 0.1	0.04	0.24	0.02	0.15	58	12.0	< 0.1	0.01	0.01
VTPPO	27/04/2015	1.06	< 0.01	< 10	< 20	< 0.01	0.05	72	45	0.30	4.3	< 4	< 20	0.17	0.52	110	0.28	< 0.01	0.05	< 0.01	0.54	49	12.6	1.06	< 0.01	0.09
VDRPN	12/05/2015	25.7	0.74	< 10	5411	13.2	18.2	3341	483490	11.3	225	10.3	502	1447	4.8	926	0.84	0.07	4.0	< 0.01	95	8.8	229	74	1.71	2.57
VDOLG	12/05/2015	24.3	1.18	< 10	6154	16.2	14.6	2801	364026	37	225	102	1463	335	6.0	1057	< 0.1	0.15	6.9	0.09	31.7	5.2	148	41	2.56	15.1
VDSRM	12/05/2015	23.0	1.28	< 10	11472	75	29.3	5439	1630125	67	295	170	1270	1914	10.5	1317	10.4	0.28	9.8	0.26	130	23.6	641	24.6	30.8	27.5
VDPFR	12/05/2015	7.6	0.34	< 10	1149	< 0.01	0.13	1605	1780	22.5	54	8.8	2488	0.79	2.63	240	< 0.1	0.76	4.3	< 0.01	0.61	23.5	11.1	30.7	1.25	1.40
VDRPO	12/05/2015	22.9	2.82	< 10	21010	41	57	2294	1091676	221	482	3025	62405	6705	15.0	361	5.4	0.63	387	0.23	627	11.7	312	388	132	82

Appendice B2 (pag. 2 di 2)

													II Campa	agna												
Sigla	Data gg/mm/aa	Li (μg/L)	Be (μg/L)	B (μg/L)	Al (μg/L)	V (µg/L)	Cr (µg/L)	Mn (μg/L)	Fe (µg/L)	Co (μg/L)	Ni (μg/L)	Cu (µg/L)	Zn (μg/L)	As (μg/L)	Se (µg/L)	Sr (μg/L)	Mo (μg/L)	Ag (μg/L)	Cd (µg/L)	Sn (μg/L)	Sb (µg/L)	Ba (μg/L)	Tl (μg/L)	Pb (μg/L)	Th (μg/L)	U (μg/L)
VSSEN	16/10/2015	0.24	< 0.01	< 10	< 20	0.19	< 0.05	< 0.2	29.1	0.16	4.0	< 4	< 20	0.16	< 0.5	96	< 0.3	< 0.04	< 0.01	< 0.03	0.18	< 10	< 0.02	0.18	< 0.02	0.13
VSFSA	16/10/2015	0.27	< 0.01	< 10	< 20	0.21	< 0.05	< 0.2	33.0	0.12	2.74	< 4	< 20	0.18	0.59	68	< 0.3	< 0.04	< 0.01	< 0.03	0.13	< 10	< 0.02	< 0.1	< 0.02	0.12
VSVAC	16/10/2015	0.28	< 0.01	< 10	< 20	0.11	< 0.05	< 0.2	20.8	0.12	2.87	< 4	< 20	0.17	< 0.5	70	< 0.3	< 0.04	< 0.01	< 0.03	0.19	25	< 0.02	0.12	< 0.02	0.20
VSVIT	16/10/2015	0.29	< 0.01	< 10	< 20	0.06	< 0.05	0.47	23.0	0.11	2.76	< 4	< 20	3.5	0.53	110	0.79	< 0.04	0.04	< 0.03	1.01	97	0.03	< 0.1	< 0.02	0.65
VSVLR	16/10/2015	0.32	< 0.01	< 10	< 20	0.15	< 0.05	< 0.2	35	0.16	4.0	< 4	< 20	0.24	< 0.5	54	< 0.3	< 0.04	< 0.01	< 0.03	0.10	< 10	< 0.02	< 0.1	< 0.02	0.06
VSDAD	16/10/2015	0.52	< 0.01	12	< 20	0.34	0.44	< 0.2	28.0	0.15	3.7	< 4	< 20	0.27	0.57	74	< 0.3	< 0.04	< 0.01	< 0.03	< 0.07	< 10	< 0.02	0.42	< 0.02	0.23
VSTRF	16/10/2015	0.60	< 0.01	< 10	< 20	0.33	0.38	0.53	52	0.12	3.18	< 4	< 20	0.26	1.29	78	< 0.3	< 0.04	< 0.01	< 0.03	< 0.07	16	< 0.02	< 0.1	< 0.02	0.34
VSMSA	16/10/2015	0.51	0.01	< 10	< 20	< 0.04	< 0.05	32.9	40	0.19	5.1	< 4	< 20	0.15	< 0.5	95	< 0.3	0.04	0.13	< 0.03	0.33	39	37	0.10	0.03	0.21
VSPAR	16/10/2015	0.15	< 0.01	< 10	< 20	0.17	0.20	< 0.2	42	0.15	3.4	< 4	< 20	0.24	< 0.5	71	< 0.3	< 0.04	< 0.01	< 0.03	0.20	46	< 0.02	< 0.1	< 0.02	0.17
VSPAE	16/10/2015	0.10	< 0.01	< 10	< 20	0.18	0.29	< 0.2	45	0.15	3.7	< 4	< 20	0.25	< 0.5	52	< 0.3	0.04	< 0.01	< 0.03	0.16	< 10	0.03	< 0.1	< 0.02	0.08
VSCAN	16/10/2015	0.15	< 0.01	< 10	< 20	0.11	0.09	0.31	26.0	0.10	2.35	< 4	< 20	2.25	< 0.5	99	1.13	< 0.04	0.05	< 0.03	0.41	73	0.04	< 0.1	< 0.02	0.87
VSLNZ	16/10/2015	0.29	< 0.01	< 10	< 20	0.11	0.22	< 0.2	36	0.12	3.1	< 4	< 20	0.35	< 0.5	67	< 0.3	< 0.04	< 0.01	< 0.03	0.19	63	0.03	< 0.1	< 0.02	0.27
VSMOG	16/10/2015	1.56	< 0.01	< 10	< 20	0.25	0.44	< 0.2	70	0.22	5.6	< 4	< 20	0.36	< 0.5	1060	0.92	< 0.04	0.02	< 0.03	0.35	20	0.10	< 0.1	< 0.02	0.39
VSMOA	16/10/2015	0.59	< 0.01	< 10	< 20	0.06	0.21	0.61	46	0.16	4.6	< 4	42	0.40	< 0.5	130	< 0.3	< 0.04	0.30	< 0.03	2.95	34	1.42	0.16	< 0.02	0.32
VSMOS	16/10/2015	0.59	< 0.01	< 10	< 20	0.07	0.21	0.56	47	0.17	4.4	< 4	41	0.43	< 0.5	130	< 0.3	< 0.04	0.29	< 0.03	2.93	34	1.45	0.16	< 0.02	0.32
VSCRP	16/10/2015	0.11	< 0.01	< 10	< 20	0.22	0.13	< 0.2	37	0.11	2.64	< 4	< 20	0.26	< 0.5	60	< 0.3	< 0.04	< 0.01	< 0.03	0.12	< 10	< 0.02	< 0.1	< 0.02	0.20
VPP02	20/10/2015	0.69	< 0.01	< 10	< 20	0.26	0.35	< 0.2	50	0.18	4.5	< 4	< 20	0.59	0.53	86	< 0.3	< 0.04	< 0.01	< 0.03	0.15	31	0.02	< 0.1	< 0.02	0.32
VPS01	20/10/2015	0.91	< 0.01	< 10	< 20	0.11	0.12	1.01	51	0.19	4.8	< 4	37	2.31	< 0.5	300	0.39	< 0.04	0.03	< 0.03	2.92	74	0.07	< 0.1	< 0.02	0.45
VPP03	20/10/2015	2.42	< 0.01	< 10	< 20	0.12	0.06	4.1	104	0.14	3.9	< 4	29.5	2.68	< 0.5	732	< 0.3	< 0.04	0.04	< 0.03	0.31	89	0.09	< 0.1	< 0.02	0.38
VPS02	20/10/2015	0.99	< 0.01	< 10	< 20	0.12	0.12	0.52	60	0.18	4.5	< 4	< 20	1.91	< 0.5	476	0.35	< 0.04	0.07	< 0.03	2.54	72	0.17	< 0.1	< 0.02	0.48
VPS06	20/10/2015	0.65	< 0.01	< 10	< 20	0.21	0.29	1.64	53	0.22	4.7	< 4	372	4.2	0.54	232	0.48	< 0.04	0.07	< 0.03	1.01	134	0.77	0.66	< 0.02	0.44
VPS03	20/10/2015	2.20	0.01	< 10	< 20	0.13	0.11	0.84	62	0.18	4.7	< 4	< 20	1.89	< 0.5	965	0.42	0.04	0.04	< 0.03	0.38	83	0.19	0.15	0.03	0.63
VPS07	20/10/2015	1.41	< 0.01	< 10	< 20	0.48	0.66	2.23	60	0.21	5.7	< 4	62	0.33	0.95	157	< 0.3	< 0.04	0.04	< 0.03	0.28	74	0.03	0.15	< 0.02	0.91
VPP01	20/10/2015	0.31	< 0.01	< 10	< 20	0.18	0.25	0.28	49	0.22	4.2	< 4	41	1.90	< 0.5	168	< 0.3	< 0.04	0.04	< 0.03	1.34	104	0.15	0.13	< 0.02	0.39
VPP04	20/10/2015	0.37	< 0.01	< 10	< 20	0.13	0.23	1.27	104	0.20	4.3	< 4	32.6	1.68	< 0.5	176	0.44	< 0.04	0.04	< 0.03	1.96	94	0.13	< 0.1	0.02	0.40
VPS05	20/10/2015	0.79	< 0.01	< 10	< 20	0.20	0.23	11.6	131	0.23	4.3	< 4	140	6.0	1.20	112	< 0.3	< 0.04	0.05	< 0.03	0.64	223	0.12	0.14	< 0.02	0.23
VTMAR	22/10/2015	13.8	< 0.01	95	< 20	1.65	0.23	330	75	1.08	8.5	19.2	< 20	6.8	0.62	876	1.84	< 0.04	0.03	0.05	1.62	33	0.07	0.14	< 0.02	1.10
VTAUR	22/10/2015	15.3	< 0.01	385	< 20	2.01	0.22	382	84	0.65	6.9	31.2	< 20	8.7	0.02	870	2.01	< 0.04	< 0.02	0.03	0.61	32	0.17	0.32	< 0.02	0.74
VTBDA	22/10/2015	13.1	0.33	< 10	3274	0.62	3.9	1563	64318			7.1	408	20.6	0.71	735	< 0.3	0.10	2.03		1.27		46	9.0	0.02	5.1
VTLBN										11.7	91									< 0.03	0.89	< 10				
	22/10/2015	0.21	< 0.01	< 10	< 20	0.09	0.06	5.5	49	0.17	3.7	< 4	< 20	2.29	< 0.5	82	< 0.3	< 0.04	0.10	< 0.03		83	0.35	< 0.1	< 0.02	0.26
VTANG VTPPT	22/10/2015	11.9	0.55	< 10	5892	4.8 0.04	7.1	3806	236979 38	23.0	120	27.9 < 4	597	146	2.22	750 154	0.86	0.25	4.2	0.09	3.33 0.52	24	73 25.0	10.9 < 0.1	7.5	9.1
VTPPV	22/10/2015 22/10/2015	1.21	< 0.01	< 10 < 10	< 20	< 0.04	< 0.05 < 0.05	89	201	0.53	8.7 10.5		< 20	0.10	0.63 < 0.5	154	< 0.3 0.32	< 0.04 < 0.04	0.07	< 0.03	2.78	44	25.0		< 0.02	0.56 1.26
		1.75	< 0.01		< 20			71		2.46		< 4	98	1.13					0.97	0.03		31	19.6	< 0.1	0.04	
VTBAL	22/10/2015	1.47	< 0.01	< 10	< 20	< 0.04	< 0.05	60	34	2.30	9.7	< 4	91	0.24	< 0.5	142	0.33	< 0.04	0.88	< 0.03	2.80	28	17.9	< 0.1	0.03	1.20
VTCRO	22/10/2015	1.52	< 0.01	< 10	< 20	< 0.04	< 0.05	47	37	1.54	8.0	< 4	56	0.29	0.53	142	0.32	< 0.04	0.61	< 0.03	3.16	27	18.2	< 0.1	< 0.02	1.24
VTPRG	22/10/2015	0.94	< 0.01	< 10	< 20	< 0.04	0.09	9.8	35	0.47	5.9	< 4	36	0.44	< 0.5	173	< 0.3	< 0.04	0.36	< 0.03	2.41	35	6.0	< 0.1	< 0.02	0.67
VTVAS	05/11/2015	1.01	< 0.01	< 10	< 20	0.64	0.11	7.6	38	0.35	5.8	< 4	36	0.54	0.52	217	0.32	< 0.04	0.32	< 0.03	2.23	42	5.2	0.24	0.02	0.67
VTSRZ	22/10/2015	0.98	< 0.01	< 10	< 20	< 0.04	0.15	5.2	40	0.28	6.0	< 4	24.2	0.50	< 0.5	228	0.37	0.04	0.19	0.03	2.04	37	5.3	< 0.1	0.06	0.66
VTINC	22/10/2015	1.50	< 0.01	< 10	< 20	0.06	< 0.05	389	43	0.91	8.3	< 4	< 20	1.56	< 0.5	231	0.87	< 0.04	0.04	0.03	3.20	104	7.1	< 0.1	< 0.02	1.25
VTOLG	22/10/2015	14.9	0.52	< 10	5507	5.1	7.6	1734	151520	15.9	124	6.2	511	93	1.19	769	< 0.3	0.09	2.81	< 0.03	4.5	< 10	59	11.3	1.17	7.7
VTGDO	22/10/2015	8.2	0.41	< 10	1696	0.17	3.00	2764	61992	15.3	82	22.5	449	6.9	1.45	567	< 0.3	< 0.04	2.70	< 0.03	0.32	47	41	7.9	4.0	6.5
VTPPO	22/10/2015	1.17	< 0.01	< 10	< 20	< 0.04	< 0.05	31.5	36	0.41	6.7	< 4	31.3	0.20	< 0.5	148	0.31	< 0.04	0.21	< 0.03	0.82	40	19.3	< 0.1	< 0.02	0.59
VDRPN	21/10/2015	69	2.39	< 10	39256	84	77	9551	2114624	38	706	< 4	1450	5093	7.9	1890	11.1	0.60	11.6	< 0.03	248	< 10	454	223	8.7	12.7
VDOLG	21/10/2015	22.2	1.13	< 10	10724	17.2	13.9	3217	339714	35	230	59	1302	235	2.46	1115	0.50	0.11	5.8	< 0.03	16.5	< 10	120	32.0	2.18	18.1
VDSRM	21/10/2015	17.0	0.68	< 10	10745	31.5	16.7	4319	723089	35	191	70	964	714	3.8	1044	3.8	0.17	6.9	0.06	28.4	10	190	9.7	19.5	19.3
VDPFR	nc	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
VDRPO	21/10/2015	22.6	2.46	< 10	36074	42	62	2266	893913	222	475	2039	88892	4392	7.5	375	6.7	0.61	419	0.17	514	< 10	211	313	174	112

Dati isotopici di H e O - acque

			I Campa	gna			II Campa	igna	
Sigla	Tipologia	Data gg/mm/aa	δ ¹⁸ O (‰)	δD (‰)	d-ex (‰)	Data gg/mm/aa	δ ¹⁸ O (‰)	δD (‰)	d-ex (‰)
VSSEN	Sorgente non captata	28/04/2015	-6.85	-40.62	14.16	16/10/2015	-6.23	-36.96	12.92
VSFSA	Sorgente non captata	28/04/2015	-6.77	-42.63	11.54	16/10/2015	-6.61	-38.77	14.07
VSVAC	Sorgente non captata	28/04/2015	-6.94	-40.62	14.87	16/10/2015	-6.31	-37.18	13.28
VSVIT	Sorgente non captata	28/04/2015	-6.44	-36.35	15.21	16/10/2015	-6.50	-34.90	17.08
VSVLR	Sorgente non captata	28/04/2015	-7.03	-40.46	15.81	16/10/2015	-6.92	-41.59	13.78
VSDAD	Sorgente non captata	28/04/2015	-5.89	-34.03	13.09	16/10/2015	-5.76	-35.15	10.96
VSTRF	Sorgente non captata	28/04/2015	-5.73	-36.63	9.23	16/10/2015	-6.10	-35.35	13.48
VSMSA	Sorgente non captata	28/04/2015	-6.56	-37.01	15.46	16/10/2015	-6.41	-37.11	14.19
VSPAR	Sorgente captata	29/04/2015	-6.42	-36.70	14.69	16/10/2015	-6.90	-37.98	17.23
VSPAE	Sorgente captata	29/04/2015	-6.57	-37.88	14.71	16/10/2015	-6.75	-37.68	16.31
VSCAN	Sorgente captata	29/04/2015	-6.09	-36.10	12.63	16/10/2015	-6.41	-35.14	16.18
VSLNZ	Sorgente captata	29/04/2015	-6.40	-35.94	15.24	16/10/2015	-6.07	-35.31	13.21
VSMOG	Sorgente captata	29/04/2015	-6.00	-33.94	14.10	16/10/2015	-6.23	-34.63	15.17
VSMOA	Sorgente captata	29/04/2015	-5.94	-35.88	11.64	16/10/2015	-5.96	-35.18	12.54
VSMOS	Sorgente captata	29/04/2015	-5.94	-33.31	14.18	16/10/2015	-6.02	-34.45	13.72
VSCRP	Sorgente captata	29/04/2015	-6.29	-37.80	12.55	16/10/2015	-6.26	-35.60	14.46
VPP02	Pozzo	28/04/2015	-5.59	-30.65	14.10	20/10/2015	-5.80	-34.06	12.37
VPS01	Pozzo	28/04/2015	-6.02	-35.40	12.72	20/10/2015	-6.04	-35.01	13.31
VPP03	Pozzo	28/04/2015	-5.77	-31.98	14.15	20/10/2015	-5.90	-34.65	12.58
VPS02	Pozzo	28/04/2015	-6.08	-35.27	13.38	20/10/2015	-6.31	-33.66	16.85
VPS06	Pozzo	28/04/2015	-6.04	-34.48	13.88	20/10/2015	-6.14	-34.94	14.15
VPS03	Pozzo	28/04/2015	-5.86	-33.55	13.32	20/10/2015	-6.03	-34.23	14.02
VPS07	Pozzo	29/04/2015	-5.87	-33.41	13.56	20/10/2015	-6.06	-33.89	14.58
VPP01	Pozzo	28/04/2015	-6.03	-33.58	14.69	20/10/2015	-6.15	-34.96	14.21
VPP04	Pozzo	28/04/2015	-6.04	-34.60	13.72	20/10/2015	-6.21	-33.96	15.70
VPS05	Pozzo	nc	nd	nd	nd	20/10/2015	-5.86	-34.99	11.90
VTMAR	Acque superficiali	27/04/2015	-5.42	-32.38	10.99	22/10/2015	-5.23	-30.15	11.70
VTAUR	Acque superficiali	27/04/2015	-5.67	-32.28	13.06	22/10/2015	-5.33	-32.01	10.63
VTBDA	Acque superficiali	27/04/2015	nd	nd	nd	22/10/2015	-6.20	-35.43	14.17
VTLBN	Acque superficiali	27/04/2015	-3.54	-17.44	10.91	22/10/2015	-4.85	-26.90	11.90
VTANG	Acque superficiali	27/04/2015	-4.80	-27.71	10.69	22/10/2015	-6.12	-35.53	13.43
VTPPT	Acque superficiali	27/04/2015	-5.59	-32.23	12.49	22/10/2015	-6.60	-36.88	15.94
VTPPV	Acque superficiali	27/04/2015	-5.54	-30.55	13.75	22/10/2015	-6.32	-36.51	14.05
VTBAL	Acque superficiali	27/04/2015	-5.98	-33.49	14.39	22/10/2015	-6.30	-36.80	13.60
VTCRO	Acque superficiali	27/04/2015	-5.83	-32.03	14.61	22/10/2015	-6.25	-35.88	14.12
VTPRG	Acque superficiali	27/04/2015	-5.85	-32.75	14.05	22/10/2015	-6.09	-35.41	13.31
VTVAS	Acque superficiali			-31.27	11.81			-35.69	15.08
VTSRZ	Acque superficiali	27/04/2015 27/04/2015	-5.39 -5.82	-34.28	12.24	05/11/2015 22/10/2015	-6.35 -6.09	-35.19	13.53
VTINC	Acque superficiali	27/04/2015	-5.48	-34.28	12.24	22/10/2015	-5.51	-33.19	12.32
VTOLG	Acque superficiali	27/04/2015	-5.43	-28.56	14.88	22/10/2015	-6.21	-35.37	14.31
VTGDO	Acque superficiali	27/04/2015	-3.43 -4.60	-25.15	11.65	22/10/2015	-6.04	-35.57	12.75
VTPPO	Acque superficiali	27/04/2015	-5.61	-31.46	13.44	22/10/2015	-6.41	-37.35	13.93
VDRPN	Drenaggio minerario	12/05/2015	-6.22 6.24	-37.05	12.71	21/10/2015	-6.37	-35.94	15.02
VDOLG	Drenaggio minerario	12/05/2015	-6.24	-35.61	14.31	21/10/2015	-6.15 6.10	-35.38	13.82
VDSRM	Drenaggio minerario	12/05/2015	-6.31 5.71	-36.39	14.09	21/10/2015	-6.19	-35.50	14.02
VDPFR	Drenaggio minerario	12/05/2015	-5.71 5.60	-33.07	12.57	nc	nd 5.52	nd	nd 12.04
VDRPO	Drenaggio minerario	12/05/2015	-5.50	-31.35	12.65	21/10/2015	-5.52	-31.32	12.84

Dati chimici sedimenti - "bulk" HHXRF

											XRF							
Sigla	Tipologia	Data gg/mm/aa	Ba (mg/g)	Fe (mg/g)	Ca (mg/g)	K (mg/g)	Al (mg/g)	Si (mg/g)	S (mg/g)	Sb (µg/g)	Sr (μg/g)	As (μg/g)	Pb (μg/g)	Zn (μg/g)	Cu (μg/g)	Mn (μg/g)	Ti (μg/g)	P (µg/g)
C1 bis	Sedimenti in alveo	27/10/2015	6.4	520	1.49	0.81	< 1500	2.29	44	172	< 50	2994	93	< 50	< 50	< 250	< 250	4270
C2	Sedimenti in alveo	27/10/2015	49	342	1.64	6.7	12.9	39	42	337	401	973	162	179	50	1042	< 250	3136
C2 bis	Sedimenti in alveo	27/10/2015	74	241	2.31	12.3	20.7	89	39	607	622	1051	392	328	131	1287	1282	3582
C3	Sedimenti in alveo	27/10/2015	14.0	234	29.3	6.0	9.4	52	7.4	< 50	161	232	148	343	< 50	4525	1029	3030
C3 bis	Sedimenti in alveo	27/10/2015	23.7	433	5.6	2.93	7.2	17.6	37	101	140	475	< 50	88	< 50	339	< 250	3458
C4	Sedimenti in alveo	27/10/2015	5.1	394	10.2	1.06	9.4	21.7	7.9	113	59	1141	110	10029	615	2013	< 250	3792
C7 sup	Sedimenti in alveo	27/10/2015	11.8	270	72	3.6	10.4	39	6.9	86	172	848	197	9097	477	2326	717	3715
C7 prof	Sedimenti in alveo	27/10/2015	69	223	11.3	8.7	22.6	75	16.0	197	771	568	428	2865	353	2366	1324	3567
C7 bis sup	Sedimenti in alveo	27/10/2015	4.6	415	14.0	2.69	12.8	24.7	7.1	128	62	1389	174	12449	750	1555	< 250	4038
C7 bis prof	Sedimenti in alveo	27/10/2015	74	82	33.0	16.0	32.0	149	10.8	79	666	166	599	1539	163	2412	2170	2931
C9 sup	Sedimenti in alveo	27/10/2015	28.1	146	161	4.3	10.6	42	5.9	< 50	378	376	177	4334	223	1833	< 250	2633
C9 prof	Sedimenti in alveo	27/10/2015	134	159	60	9.6	23.9	88	15.1	81	1297	280	489	2579	273	3648	< 250	2967
C10 sup	Sedimenti in alveo	27/10/2015	37	87	199	9.9	12.8	52	5.6	64	376	206	155	2355	144	1537	709	2373
C10 prof	Sedimenti in alveo	27/10/2015	132	123	29.7	15.1	38	127	19.3	< 50	1300	141	421	895	227	3174	856	2577
C12 sup	Sedimenti in alveo	27/10/2015	61	102	40	12.3	25.2	124	11.6	81	657	162	367	1273	218	1830	1566	3158
C12 prof	Sedimenti in alveo	27/10/2015	88	51	6.0	15.6	30.9	162	19.6	80	956	155	682	933	114	2179	1354	2636
C25 20cm*	Sedimenti extra alveo	27/10/2015	131	107	33.3	11.5	31.8	135	16.2	86	1183	204	402	920	210	3041	1362	2839
C25 40cm*	Sedimenti extra alveo	27/10/2015	87	104	23.9	11.2	25.4	126	17.9	124	933	153	311	999	134	2635	1002	2820
C26 20cm*	Sedimenti extra alveo	27/10/2015	54	77	33.1	14.0	25.5	136	12.6	86	593	133	433	907	110	2197	1446	2828
C26 28cm*	Sedimenti extra alveo	27/10/2015	60	84	31.6	15.2	29.5	135	11.3	135	630	151	467	979	167	2186	1838	2782
C27 20cm*	Sedimenti extra alveo	27/10/2015	65	95	25.4	14.3	28.3	129	11.0	97	697	160	348	1171	149	2522	1597	3042
C27 50cm*	Sedimenti extra alveo	27/10/2015	38	90	29.2	16.2	27.5	126	7.6	63	366	163	334	1229	125	1844	2208	2777
C28 20cm*	Sedimenti extra alveo	27/10/2015	0.97	28.3	145	23.2	35	104	1.12	< 50	68	< 50	< 50	81	< 50	448	2671	2167
C28 45cm*	Sedimenti extra alveo	27/10/2015	72	93	51	13.7	30.6	107	16.4	164	818	138	375	776	162	2638	1304	3120
C29 20cm*	Sedimenti extra alveo	27/10/2015	149	187	13.7	12.7	33	93	18.3	143	1380	394	718	2223	264	4728	1268	2949
C29 50cm*	Sedimenti extra alveo	27/10/2015	145	175	12.9	14.4	40	99	17.7	138	1385	370	1110	2294	324	6428	< 250	3102
G1 (VDRPN)	Sedimenti ingresso miniere	21/10/2015	54	181	1.13	16.3	42	120	60	1143	383	1721	284	341	98	1141	2081	3249
G2	Sedimenti ingresso miniere	21/10/2015	148	91	2.25	23.8	57	136	56	384	1339	186	271	603	193	3468	1787	3213
G3 (VDOLG)	Sedimenti ingresso miniere	21/10/2015	145	192	3.10	18.7	44	90	45	532	1214	647	575	293	206	3159	< 250	3350
G6 (VDPFR)	Sedimenti ingresso miniere	21/10/2015	2.42	557	1.82	1.10	4.3	6.7	14.1	< 50	< 50	128	268	1665	134	1172	< 250	2621
G7 (751111)	Sedimenti ingresso miniere	21/10/2015	45	102	19	9.8	20.8	89	84	80	628	181	736	431	145	1140	1774	2613
G10 (VDRPO)	Sedimenti ingresso miniere	21/10/2015	134	65	1.39	27.1	60	142	42	470	1363	674	2332	3201	358	2766	2206	3456
G10 (VDIR O)	•	21/10/2015	5.9	297	1.46	12.7	18.0	61	26.9	221	79	1378	297	390	69	420	1616	4729
011 (V D 3111VI)	Jeanner in Bresso millione	_1, 10, 2013	3.5	25,	1.10	14.7	10.0	<u> </u>	20.5		,,,	13,0	,	550		120	1010	1,25

sup = sedimento superficiale o "mobile"; prof = sedimento profondo o "fossile"

^{*}profondità di campionamento

Dati chimici sedimenti - estratto acido ICP-MS

		ICP-MS																								
Sigla	Data gg/mm/aa	Li (µg/g)	Be (μg/g)	Β (μg/g)	Al (mg/g)	V (μg/g)	Cr (µg/g)	Mn (μg/g)	Fe (mg/g)	Co (µg/g)	Ni (μg/g)	Cu (µg/g)	Zn (μg/g)	As (μg/g)	Se (µg/g)	Sr (μg/g)	Mo (μg/g)	Ag (μg/g)	Cd (µg/g)	Sn (μg/g)	Sb (µg/g)	Ba (mg/g)	TI (μg/g)	Pb (μg/g)	Th (µg/g)	U (μg/g)
C1 bis	27/10/2015	0.46	< 0.02	nd	1.09	87	3.6	24.3	476	0.17	< 2	< 20	< 90	3378	10.0	22.9	9.1	0.20	< 0.06	0.34	144	1.79	12.1	34	0.37	0.08
C2	27/10/2015	6.0	0.09	nd	3.24	31.9	6.8	221	269	1.55	7.9	< 20	112	1059	< 10	55	7.1	3.47	0.26	0.50	65	2.76	56	111	1.63	0.44
C2 bis	27/10/2015	8.5	0.17	nd	3.9	51	12.1	271	156	4.2	28	25.7	211	778	< 10	92	12.3	3.5	0.41	0.95	57	3.5	312	155	2.32	0.68
C3	27/10/2015	10.2	0.45	nd	6.0	18.4	12.2	3111	191	23.1	98	36	437	302	< 10	89	4.6	1.08	3.06	< 0.2	21.4	4.1	61	120	4.9	6.8
C3 bis	27/10/2015	5.1	0.10	nd	2.67	22.2	7.7	164	206	6.3	17.3	< 20	< 90	384	< 10	22.0	18.9	1.64	0.27	< 0.2	51	1.16	16.5	71	1.96	0.57
C4	27/10/2015	1.90	0.77	nd	9.8	13.3	16.1	1715	349	64	131	863	15875	1476	< 10	62	3.00	0.54	82	< 0.2	37	2.20	17.3	122	38	30.4
C7 sup	27/10/2015	7.4	0.62	nd	8.7	18.0	32.8	1378	212	50	128	606	12466	982	< 10	167	2.55	1.30	63	1.41	29.7	6.1	35	208	26.8	19.1
C7 prof	27/10/2015	13.0	0.82	nd	11.0	23.0	24.2	532	254	18.2	74	616	5881	1062	< 10	189	6.1	3.5	27.5	2.04	50	10.3	19.3	285	33.1	21.8
C7 bis sup	27/10/2015	3.20	0.80	nd	11.0	15.1	18.7	1199	351	57	133	950	17029	1636	< 10	69	3.09	0.75	84	0.29	40	2.19	22.4	152	42	32.4
C7 bis prof	27/10/2015	12.4	0.32	nd	4.8	21.2	12.0	616	47	12.4	34	41	1164	173	< 10	69	4.7	2.22	4.8	0.23	23.6	3.6	14.8	462	4.0	1.2
C9 sup	27/10/2015	11.8	0.39	nd	6.0	15.9	20.7	810	96	20.6	54	159	4062	362	< 10	185	2.58	1.18	21.3	0.45	15.6	7.7	13.2	138	9.2	4.7
C9 prof	27/10/2015	8.6	0.23	nd	3.28	16.8	9.6	451	59	10.8	38	59	1244	192	< 10	135	4.2	2.23	5.0	0.87	26.8	6.4	14.6	219	3.4	0.95
C10 sup	27/10/2015	11.1	0.33	nd	5.3	17.1	11.3	580	54	12.4	38	113	1635	186	< 10	177	2.77	2.26	8.2	1.04	23.2	8.2	12.0	138	4.7	1.54
C10 prof	27/10/2015	10.8	0.20	nd	3.08	19.1	9.2	318	43	8.7	26.3	284	618	139	< 10	101	9.0	2.78	2.54	0.85	27.7	4.0	7.7	943	2.78	0.60
C12 sup	27/10/2015	14.7	0.36	nd	5.9	20.0	18.7	430	51	12.8	35	117	1171	153	< 10	139	3.08	2.32	5.5	1.62	19.9	7.4	9.1	263	5.0	1.41
C12 prof	27/10/2015	8.0	0.12	nd	2.46	8.2	5.5	120	22.5	4.4	8.5	< 20	747	92	< 10	119	1.46	5.3	3.36	0.43	19.8	6.9	4.3	480	3.20	0.76
C25 20cm*	27/10/2015	12.4	0.29	nd	4.9	20.1	13.2	979	44	13.1	29.9	45	684	139	< 10	165	5.4	2.34	3.08	1.65	24.5	9.4	10.5	285	3.8	1.00
C25 40cm*	27/10/2015	14.7	0.35	nd	5.9	22.3	17.8	559	54	10.4	32.8	48	942	158	< 10	170	4.6	3.9	3.9	1.11	28.5	9.4	10.8	255	4.1	1.37
C26 20cm*	27/10/2015	14.1	0.32	nd	5.4	19.1	16.5	582	45	11.1	31.7	44	848	145	< 10	168	4.3	3.21	3.5	0.93	23.8	9.1	12.1	305	3.9	1.14
C26 28cm*	27/10/2015	16.3	0.37	nd	6.5	22.0	15.5	607	47	12.0	32.0	50	847	153	< 10	194	4.0	4.0	3.8	0.77	22.9	10.2	15.3	308	4.6	1.34
C27 20cm*	27/10/2015	18.3	0.44	nd	7.7	20.7	15.7	810	55	14.7	37	63	1142	181	< 10	170	3.04	2.62	5.4	0.64	14.6	9.7	11.0	248	5.3	1.94
C27 50cm*	27/10/2015	20.1	0.45	nd	8.5	23.0	20.1	572	53	13.3	41	242	1058	171	< 10	143	2.91	18.5	4.5	1.63	14.3	7.7	9.4	268	5.5	1.81
C28 20cm*	27/10/2015	42	0.57	nd	11.0	18.9	8.7	306	18.2	8.3	18.7	< 20	< 90	26.4	< 10	66	1.93	< 0.2	0.32	< 0.2	0.65	0.47	0.60	16.4	6.6	0.42
C28 45cm*	27/10/2015	36	0.70	nd	13.4	39	41	742	55	12.0	44	73	685	126	< 10	270	4.7	4.5	2.65	2.35	19.3	13.2	14.2	249	4.5	1.04
C29 20cm*	27/10/2015	8.1	0.28	nd	4.2	63	10.2	1230	96	14.2	48	47	1438	260	< 10	121	8.0	6.4	5.5	0.24	38	7.5	18.9	447	4.3	1.83
C29 50cm*	27/10/2015	14.6	0.43	nd	6.8	29.2	11.0	1481	83	18.8	48	76	1542	325	< 10	118	10.5	8.9	8.5	0.21	47	6.8	24.6	566	5.2	3.04
G1 (VDRPN)	21/10/2015	17.2	0.12	nd	6.8	37	12.7	104	169	1.99	38	< 20	198	2281	12.5	38	26.8	2.89	0.92	0.75	132	0.60	109	175	3.13	0.40
G2	21/10/2015	2.93	0.20	nd	2.74	21.3	8.9	50	84	5.6	19.4	42	473	186	< 10	168	6.5	6.6	6.8	0.84	120	0.85	46	127	3.12	1.49
G3 (VDOLG)	21/10/2015	1.52	0.12	nd	1.88	38	21.7	187	157	5.8	28.2	58	204	608	< 10	160	10.9	9.4	0.74	7.1	96	2.11	156	323	2.04	1.17
G6 (VDPFR)	21/10/2015	0.58	0.19	nd	2.93	6.9	10.2	981	488	25.3	11.3	149	2253	182	< 10	30.9	1.54	2.60	0.57	0.25	45	1.73	2.70	227	55	4.2
G7	21/10/2015	9.9	0.22	nd	16.6	19.1	5.2	58	67	8.9	13.0	121	691	163	< 10	216	1.99	5.8	3.6	< 0.2	3.4	0.78	17.4	509	11.9	0.52
G10 (VDRPO)	21/10/2015	3.05	0.09	nd	1.78	10.3	15.9	23.4	41	3.9	14.8	177	3914	708	< 10	98	7.0	35	17.2	1.51	149	1.97	63	1691	7.6	2.56
G11 (VDSRM)	21/10/2015	19.6	0.32	nd	6.7	91	15.7	298	257	3.9	29.1	66	466	1485	< 10	66	13.8	2.52	0.68	0.87	60	2.73	299	248	4.7	0.86

nd = non determinato

sup = sedimento superficiale o "mobile"; prof = sedimento profondo o "fossile"

^{*}profondità di campionamento

Dati mineralogici sedimenti - X RP D (X-Ray Powder Diffraction)

Sigla	Mineralogia Analisi per diffrazione di raggi X
C1 bis	Gt
C2	III, Qtz, Brt, Gt
C2 bis	III, Qtz, Brt, Chl, Jar
C3	III, Qtz, Ab, Chl, Brt, Dol
C3 bis	III, Qtz, Brt, Chl, Ms, Ab, Gt
C4	111
C7 sup	Cal, Qtz, III, Ab, Chl, Dol, Gt
C7 prof	III, Qtz, Brt, Chl, Ab, Gt
C7 bis sup	111
C7 bis prof	Qtz, Ill, Cal, Brt, Chl, Ab, Dol, Or
C9 sup	III, Qtz, Cal, Brt, Chl, Ab
C9 prof	III, Qtz, Brt, Ab, Chl, Cal, Dol, Or, Gt, Tur
C10 sup	Qtz, Ill, Cal, Brt, Chl, Ab, Or, Gt
C10 prof	Qtz, Ill, Brt, Cal, Chl, Ab, Or, Dol, Py
C12 sup	Qtz, Ill, Brt, Cal, Chl, Ab, Or, Dol, Gt
C12 prof	III, Qtz, Brt, Cal, Chl, Ab, Or, Dol, Gt, Tur
C25 20cm*	Qtz, Ill, Brt, Cal, Chl, Ab, Or, Dol
C25 40cm*	Qtz, Ill, Ab, Brt, Chl, Cal, Or, Dol
C26 20cm*	Qtz, Ill, Ab, Brt, Cal, Chl, Or, Dol
C26 28cm*	Qtz, Ill, Ab, Brt, Cal, Chl, Or, Dol
C27 50cm*	Qtz, Ill, Chl, Brt, Cal, Ab, Or, Dol
C28 20cm*	Cal, Qtz, Ill, Ab, Chl, Or, Sme?
C28 45cm*	Qtz, Ill, Calc, Ab, Chl, Brt, Or, Dol, Sme?
C29 20cm*	Qtz, III, Brt, Ab, Chl, Or
C29 50cm*	Qtz, III, Brt, Ab, Chl, Or
G1 (VDRPN)	Sm, Ill, Qtz, Ab, Brt, Py
G2	III, Qtz, Brt, Ab, Or, Py
G3 (VDOLG)	Ill, Brt, Qtz, Ab, Or, Gt, Jar
G6 (VDPFR)	Gt, III
G7	III, Qtz, Gp, Brt, Ab, Or, Jar
G10 (VDRPO)	III, Qtz, Brt, Ab, Or
G11 (VDSRM)	Qtz, III, Gt, Chl, Ab

sup = sedimento superficiale o "mobile"; prof = sedimento profondo o "fossile" *profondità di campionamento