

ACCORDO DI COLLABORAZIONE SCIENTIFICA TRA REGIONE TOSCANA UNIVERSITÀ DI PISA - DIPARTIMENTO DI SCIENZE DELLA TERRA COMUNE DI PIETRASANTA

Studio multidisciplinare integrato (geologico-ambientale) nel bacino del Torrente Baccatoio nell'ambito delle "Attività e interventi previsti per il superamento della contaminazione da tallio nell'acqua pubblica del Comune di Pietrasanta e per la realizzazione della bonifica delle aree minerarie "Buca della Vena" e "Monte Arsiccio"

RELAZIONE DI BREVE PERIODO

Responsabile:

Prof. Roberto Giannecchini

Pisa, 30 luglio 2015

Gruppo di lavoro Dipartimento di Scienze della Terra, Università di Pisa

Prof. Massimo D'Orazio

Prof. Riccardo Petrini

Prof. Roberto Giannecchini

Dott. Simone Vezzoni

Dott. Cristian Biagioni

con la collaborazione del Prof. Alberto Puccinelli e del Prof. Giancarlo Molli

Gruppo di lavoro Dipartimento di Biologia, Università di Pisa

Prof. Graziano Di Giuseppe

Dott. Céline Fusi

Gruppo di lavoro Dipartimento di Agraria, Università di Bologna

Prof. Livia Vittori Antisari

Prof. Gilmo Vianello

Gruppo di lavoro Istituto di Geoscienze e Georisorse - CNR Pisa

Dott. Marco Doveri

Dott. Matteo Lelli

Dott. Massimo Guidi

Dott. Matia Menichini

Indice:

1. Introduzione	pag. 4
2. Inquadramento geografico e geologico	pag. 4
3. Mineralizzazioni e sorgenti della contaminazione	pag. 5
4. Caratteristiche idrografiche e idrogeologiche del bacino del Torrente Baccatoio	pag. 10
4.1. Caratteristiche generali	pag. 10
4.2. Assetto idrogeologico del bacino del Torrente Baccatoio	pag. 10
4.3. Le sorgenti del bacino idrografico del Torrente Baccatoio	pag. 11
4.4. Sintesi pluviometrica antecedente la I campagna di campionamento	pag. 20
5. Campionamenti	pag. 21
6. Metodologie analitiche	pag. 27
7. Riferimenti normativi per acque, suoli e piante	pag. 28
8. Risultati	pag. 30
8.1. Acque	pag. 30
8.2. Suoli e piante	pag. 36
8.3. Comunità microbiche	pag. 50
9. Note conclusive	nag. 51

Appendice A

Appendice B

1. Introduzione

Il presente elaborato costituisce la relazione di breve periodo come previsto dall'art. 6 ("Onere complessivo e modalità di pagamento") dell'Accordo di collaborazione scientifica tra Dipartimento di Scienze della Terra - Università di Pisa, Regione Toscana e Comune di Pietrasanta.

Nell'ambito delle attività previste per il raggiungimento degli obiettivi e per le finalità riportate nell'Allegato tecnico dell'Accordo di collaborazione scientifica stesso, nel breve periodo è previsto che "siano resi disponibili i seguenti materiali":

- caratterizzazione geologico-strutturale di base;
- inventario dei dati esistenti sulle diverse matrici ambientali, georeferenziati;
- nuovi dati di concentrazione, preliminari ma già utili ai fini della caratterizzazione, di elementi tossici in acque, suoli e biota;
- caratterizzazione idrogeochimica preliminare delle acque per uso idropotabile;
- caratterizzazione delle popolazioni batteriche all'interno delle gallerie minerarie.

Questo è inteso come prima fase per la "individuazione e determinazione delle modalità di inquinamento da metalli pesanti (tra cui tallio)" nel bacino del torrente Baccatoio, anche "ai fini del completamento della caratterizzazione ambientale" (art. 2 dell'Accordo di collaborazione scientifica). Per il raggiungimento di questi obiettivi preliminari il Dipartimento di Scienze della Terra - Università di Pisa si è avvalso della collaborazione del Dipartimento di Biologia dello stesso Ateneo, del Dipartimento di Scienze Agrarie della Università di Bologna e dell'Istituto di Geoscienze e Georisorse del CNR, UO di Pisa, come previsto nell'Allegato tecnico.

Questa prima fase di indagine è stata effettuata attraverso le seguenti campagne di campionamento:

Gennaio 2015: 1^a campagna campionamento suoli e ortaggi;

Marzo 2015: 2^a campagna campionamento suoli e ortaggi;

Aprile 2015: 1^a campagna campionamento acque (sorgenti, pozzi, acque superficiali);

Maggio 2015: 1^a campagna campionamento drenaggi minerari e specie biologiche.

Inoltre, per tutto il periodo è proseguito lo studio delle fasi mineralogiche alla base dei processi di rilascio dei contaminanti, per determinarne il contenuto in elementi tossici e potenzialmente tossici e la tendenza alla alterazione e dunque il loro potenziale come sorgenti di inquinanti.

I campioni raccolti sono stati analizzati e caratterizzati per una serie di parametri e i dati ottenuti costituiscono la base analitica della presente relazione. Altri dati, quali quelli isotopici di ossigeno e idrogeno, sono in fase di elaborazione e saranno parte integrante per il raggiungimento degli obiettivi previsti nel medio e lungo periodo di attività.

2. Inquadramento geografico e geologico

L'area di studio è posta nella parte meridionale delle Alpi Apuane e comprende prevalentemente il bacino idrografico del Torrente Baccatoio nella sua parte a monte della SS 439 "Sarzanese" e parte del conoide alluvionale a valle della SS 439 stessa. Tra i principali affluenti del Torrente Baccatoio (che nella parte a monte di Valdicastello prende il nome di Canale dei Molini) nell'area di studio si riconoscono in sponda destra il Fosso delle Piastre e presso l'abitato di Valdicastello Carducci, in località Le Piovane, il Fosso del Fondo (o Canale di Fondo).

Dal punto di vista geologico, nella parte a monte il bacino è caratterizzato da una complessa sequenza di litotipi, costituiti da rocce metamorfiche appartenenti all'Unità Autoctono *Auctt.*, che affiorano nella "Finestra tettonica di Sant'Anna", circondate dalle Unità della Falda Toscana, stratigraficamente e fisiograficamente al di sopra, e costituite principalmente da Calcare cavernoso e dai Calcari e marne a *Rhaetavicula contorta* (Triassico superiore). Le unità metamorfiche sono essenzialmente costituite da litotipi carbonatici (Grezzoni e Marmi; Triassico superiore - Giurassico

inferiore) e da filladi, quarziti e metarioliti (Filladi inferiori e Porfiroidi e Scisti porfirici; Cambriano-Ordoviciano). Sono presenti anche livelli di filladi e metarenarie appartenenti alla formazione dello Pseudomacigno (Oligocene - Miocene). Come sarà evidenziato nel seguito, questi litotipi hanno diverse caratteristiche di permeabilità e possono ospitare corpi mineralizzati contenenti elementi tossici o potenzialmente tossici.

Nel tratto immediatamente a valle di Valdicastello, il Torrente Baccatoio incide le proprie alluvioni costituite in prevalenza da ciottoli e ghiaie in matrice sabbiosa; più a valle il torrente scorre su depositi dapprima di conoide, poi alluvionali, caratterizzati da livelli sabbiosi e ghiaiosi intervallati da orizzonti limo-argillosi.

Per la sua posizione nell'area delle Alpi Apuane e per le sue caratteristiche fisiografiche, il bacino è caratterizzato da una piovosità elevata (oltre 2.000 mm/anno). Le caratteristiche idrogeologiche dei litotipi presenti, inoltre, permettono una cospicua circolazione idrica sotterranea, specialmente a livello delle formazioni carbonatiche poste alle quote più elevate, con numerose scaturigini, talora captate per usi idropotabili, in corrispondenza del contatto con i litotipi meno permeabili sottostanti (in particolare le rocce della Formazione delle Filladi inferiori).

3. Mineralizzazioni e sorgenti della contaminazione

La natura e la distribuzione delle mineralizzazioni nell'area di studio ha implicazioni dirette sul rilascio di elementi tossici e potenzialmente tossici alla fase acquosa, che ne determina la successiva dispersione alla scala del bacino.

In particolare, le Alpi Apuane meridionali sono un'area in cui affiorano numerosi corpi mineralizzati che, sebbene di piccole dimensioni, sono stati oggetto di coltivazione in maniera discontinua per molti secoli (Fig. 3.1).

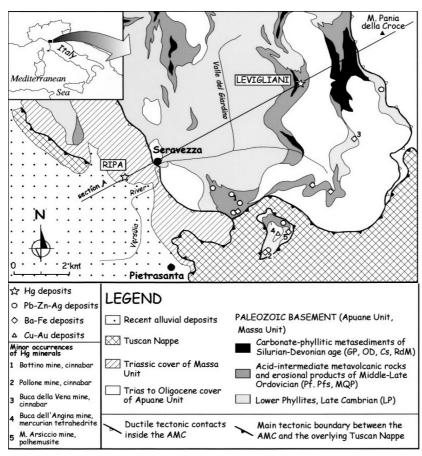


Fig. 3.1: Carta geologica schematica delle Alpi Apuane meridionali con ubicazione dei principali giacimenti e mineralizzazioni.

Le principali tipologie di mineralizzazioni possono essere schematicamente suddivise in:

Mineralizzazioni a Pb-Zn(-Ag): le principali miniere che hanno coltivato questa tipologia di mineralizzazione sono quelle del Bottino, La Rocca, Gallena e Argentiera di Sant'Anna (Stazzema). I corpi mineralizzati sono tabulari e incassati in rocce paleozoiche (Filladi Inferiori, Porfiroidi e Scisti porfirici dell'Unità Autoctono *Auctt.*). I minerali più abbondanti sono costituiti essenzialmente da galena e sfalerite a cui sono associati calcopirite e solfosali di Pb e Sb. In alcune località (ad es., Argentiera di Sant'Anna) queste mineralizzazioni sono spazialmente associate con quelle a barite, pirite e ossidi di Fe.

Mineralizzazioni a barite, pirite e ossidi di Fe: queste mineralizzazioni affiorano discontinuamente in un'ampia area che si estende per circa 10 km in direzione SW-NE dall'abitato di Valdicastello (Pietrasanta) a Fornovolasco (Fabbriche di Vergemoli). Le principali miniere da S verso N sono quelle del Pollone (Pietrasanta), Monte Arsiccio, Canale della Radice e Buca della Vena (Stazzema) e Trimpello-Fornovolasco (Fabbriche di Vergemoli; Fig. 3.2).

La mineralizzazione è costituita essenzialmente da barite, pirite, magnetite ed ematite a cui sono associati solfuri e solfosali principalmente di Pb, Zn, Sb, Tl, As e Hg. Queste mineralizzazioni mostrano stretti rapporti spaziali con quelle a Pb-Zn(-Ag) come si osserva nelle miniere dell'Argentiera di Sant'Anna e del Pollone.

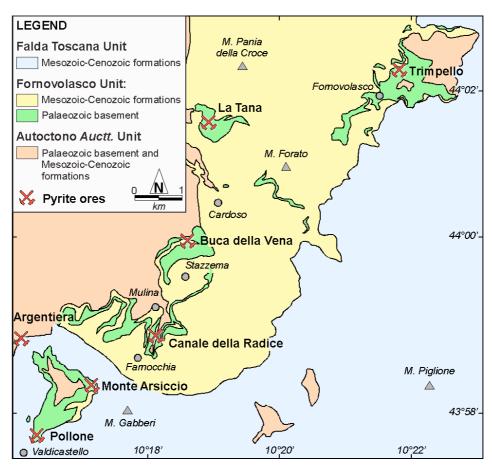


Fig. 3.2: Carta geologica schematica delle Alpi Apuane meridionali ed ubicazione delle principali mineralizzazioni a barite, pirite ed ossidi di Fe

<u>Mineralizzazioni a Cu(-Au)</u>: i principali corpi mineralizzati affiorano presso la Finestra tettonica di Sant'Anna e sono stati coltivati essenzialmente nella miniera di Buca dell'Angina. La mineralizzazione è costituita da vene di barite e fluorite con associata tetraedrite.

<u>Mineralizzazioni a Hg</u>: le miniere che hanno coltivato questo tipo di mineralizzazione sono le miniere di Ripa (Seravezza) e Levigliani (Stazzema). La mineralizzazione coltivata è costituita da cinabro a cui può essere associato Hg nativo (Levigliani).

Nell'area di studio del presente progetto affiorano numerosi corpi mineralizzati (Fig. 3.3) a barite, pirite e ossidi di Fe ed inoltre la mineralizzazione a pirite è diffusa anche in affioramenti in tutta la Finestra tettonica di Sant'Anna. I principali corpi mineralizzati sono stati coltivati dalle miniere del Pollone e di Monte Arsiccio. A questi corpi si aggiungono quelli a Pb-Zn(-Ag) sfruttati essenzialmente dal complesso minerario dell'Argentiera di Sant'Anna ma ve ne sono presenti anche altri di minori dimensioni (Cascatoia nel Canal d'Angina, Zulfello e Pollone).

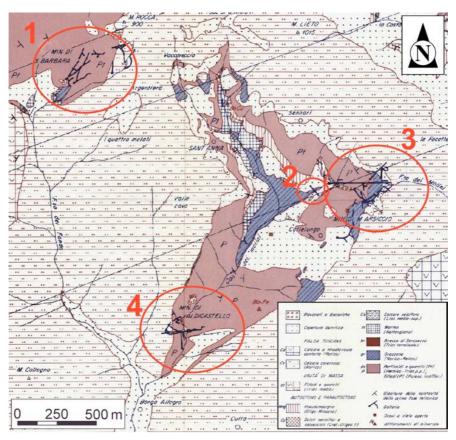


Figura 3.3: Carta geologica schematica del bacino idrografico del Torrente Baccatoio con localizzazione delle principali aree mineralizzate. I numeri si riferiscono alle principali miniere: 1. Argentiera di Sant'Anna; 2. Buca dell'Angina; 3. Monte Arsiccio; 4. Pollone

Sebbene non vi sia ancora accordo sull'origine di queste mineralizzazioni è invece noto il contesto geologico di affioramento. I corpi mineralizzati formano degli orizzonti discontinui ubicati nella porzione più superficiale delle rocce filladiche e quarzitiche paleozoiche (Pollone) e a diretto contatto con la sovrastante formazione dei Grezzoni (Buca della Vena, Canale della Radice, Monte Arsiccio e Fornovolasco). Poiché questo contatto geologico mette in comunicazione una formazione carbonatica permeabile (Grezzoni) con una poco permeabile e mineralizzata alla base (filladi e quarziti), ne deriva l'importanza che tale contatto riveste in termini di circolazione idrogeologica e interazione acqua-sorgenti della contaminazione.

I dati disponibili e le nuove analisi rivelano la presenza di una caratteristica ed elevata anomalia geochimica a tallio (Tl) ed altri metalli pesanti (Pb, As, Zn, Sb, Hg) dei corpi mineralizzati a barite, pirite e ossidi di Fe. In particolare, questi studi hanno evidenziato una complessità mineralogica con la presenza di fasi minerali reattive e solubili ed elevati tenori in Tl (fino a circa 1000 mg/kg) e di

altri metalli tossici e/o potenzialmente tossici all'interno delle piriti. In particolare, infatti, la presenza di elevate concentrazioni di metalli pesanti all'interno della pirite rappresenta un potenziale rischio ambientale poiché la pirite è uno dei minerali più facilmente alterabili in condizioni superficiali.

Nel dettaglio del bacino del torrente Baccatoio, come si è detto, si hanno quattro principali aree minerarie:

Argentiera di Sant'Anna (Stazzema)

L'area mineraria dell'Argentiera di Sant'Anna è ubicata al di fuori della Finestra tettonica di Sant'Anna e insiste sulla parte alta del Fosso di Fondo. Comprende 12 gallerie principali ubicate fra le quote di 790 m e 554 m s.l.m. La coltivazione ha messo in evidenza due tipologie di mineralizzazioni:

Corpi tabulari centimetrici a galena e sfalerite con tetraedrite argentifera e solfosali di Pb e Sb. I corpi tabulari hanno giacitura concorde con la scistosità della roccia incassante (Filladi inferiori e Porfiroidi e Scisti porfirici);

Corpi lentiformi a pirite, magnetite ed ematite. Questa seconda tipologia forma delle lenti metriche collocate al contatto fra le Filladi inferiori e le rocce carbonatiche (dolomie e marmi).

Buca dell'Angina (Stazzema)

La miniera di Buca dell'Angina è un esempio di interazione fra sistemi carsici e attività estrattiva. La miniera è ubicata lungo l'alto corso del Torrente Baccatoio (in questa zona denominato Canale dei Molini), a monte della confluenza con il Fosso delle Piastre. La mineralizzazione è costituita da vene di barite, fluorite e quarzo con associata tetraedrite che fu l'oggetto principale di coltivazione per l'estrazione di Cu. La mineralizzazione si sviluppa interamente all'interno dei Grezzoni ed è stata coltivata per un dislivello complessivo di circa 50 metri su 4 livelli minerari principali raggiungibili attraverso pozzi naturali e artificiali. Durante l'attività estrattiva, infatti, furono incontrate almeno 3 cavità carsiche.

Da un punto di vista giacimentologico la mineralizzazione è molto modesta (la vena principale non supera i 50 cm di spessore ma solitamente è inferiore ai 20 cm) sebbene contenga alti tenori di Au. Questa tipologia di mineralizzazione è la meno studiata e conosciuta di tutto il distretto minerario Apuano.

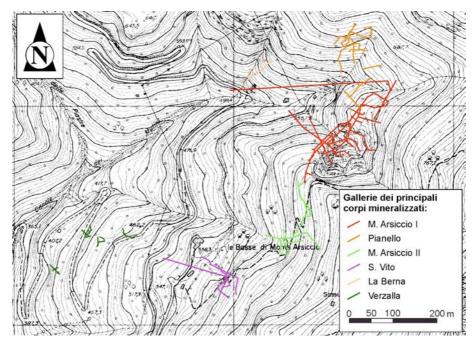


Fig. 3.4: Andamento di principali gallerie e corpi minerari che sono stati oggetto di coltivazione nell'area mineraria di Monte Arsiccio.

Monte Arsiccio (Stazzema)

L'area mineraria di Monte Arsiccio è una delle più importanti del distretto minerario apuano e comprende quattro principali corpi conosciuti comunemente con i nomi di Monte Arsiccio I (o Massa Nuova), Pianello, Monte Arsiccio II e San Vito (quest'ultimi due conosciuti anche con il nome di Le Basse di Monte Arsiccio; Fig. 3.4). A queste località si aggiungono quelle di La Berna e Verzalla.

Monte Arsiccio fa parte dei giacimenti a barite, pirite ed ossidi di ferro. La mineralizzazione ha morfologia tabulare-lentiforme ed è localizzata in corrispondenza del contatto tra il complesso delle Filladi Inferiori e la sovrastante formazione dei Grezzoni. Verzalla è una porzione del bacino minerario di Monte Arsiccio localizzata in corrispondenza di un antico ed esteso corpo frana che interessa il versante occidentale del M. Gabberi. A Verzalla sono stati coltivate preferenzialmente a cielo aperto alcune zone del volume di roccia franato, ove era mantenuta l'originale stratigrafia o, comunque, non era frammisto a materiale litoide non mineralizzato di altre formazioni.

L'anomalia a Tl è stata identificata per la prima volta nei minerali e mineralizzazioni della Min. di Monte Arsiccio. Tale località risulta essere ad oggi l'unica fra quelle a barite, pirite ed ossidi di ferro che contiene fasi primarie di Tl di dimensioni macroscopiche e con tenori che possono raggiungere il 19% in peso. Va inoltre sottolineato come l'associazione mineralogica riconosciuta in questa zona mostri alte concentrazioni di Sb, As, Pb e Hg.

La scoperta di solfosali di Tl ha portato ad indagare su un ampio spettro la geochimica dei corpi mineralizzati a pirite ancora presenti nelle gallerie minerarie. Nel caso di Monte Arsiccio, nelle piriti sono stati misurati tenori di Tl fino a 400 mg/kg associati ad alti tenori di Sb, As, Pb.

Fra i corpi mineralizzati coltivati il principale è quello di Monte Arsiccio I che dalla quota di affioramento (ca. 650 m s.l.m.) fu intercettato e seguito in profondità fino alla galleria di ribasso Sant'Erasmo (482 m). I principali livelli minerari della miniera di M. Arsiccio I sono: Zabelli (586 m), Sant'Anna (550 m), Sant'Olga (522 m), San Francesco (510 m) e Sant'Erasmo (482 m). Questo corpo fu coltivato dalla società E.D.E.M. fino alla fine delle attività estrattive (fine anni '80 del 1900).

Pollone (Pietrasanta)

La miniera del Pollone è ubicata nella terminazione meridionale della Finestra tettonica di Sant'Anna, poco a nord della confluenza del Torrente Baccatoio (Canale dei Molini) con il Fosso del Fondo (Fig. 3.5). La mineralizzazione principale è a barite e pirite; a differenza della miniera di Monte Arsiccio, è completamente inglobata all'interno delle filladi e quarziti del basamento paelozoico e ospitava masse filoniane a galena argentifera e sfalerite sfruttate nel secolo XIX. Le principali aree di estrazione sono riportate in Fig. 3.5. L'attività estrattiva, rivolta principalmente alla coltivazione dei corpi a barite, terminò negli anni '70 del 1900.

Come in altri giacimenti a barite, pirite ed ossidi di ferro, oltre alle fasi principali sono stati rinvenuti numerosi solfuri e solfosali. A differenza di M. Arsiccio non sono state ad oggi individuate fasi primarie di Tl mentre lo studio geochimico ha evidenziato, anche in questi corpi minerari, alti valori di Tl (fino a circa 600 mg/kg) nelle piriti, associati ad Sb, Pb e As.

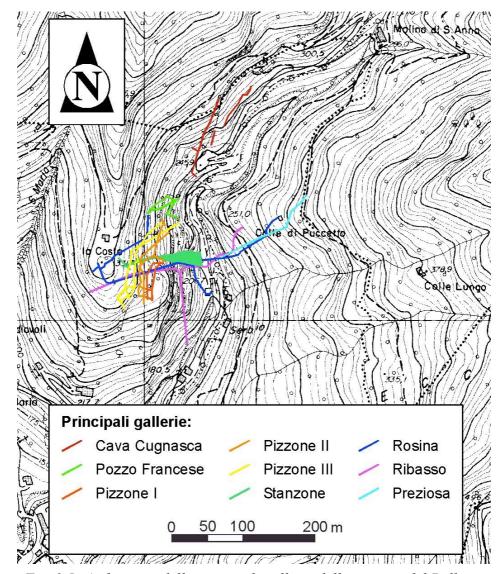


Fig. 3.5: Andamento delle principali gallerie della miniera del Pollone.

4. Caratteristiche idrografiche e idrogeologiche del bacino del Torrente Baccatoio

4.1. Caratteristiche generali

L'assetto idrogeologico del bacino idrografico del Torrente Baccatoio ha numerosi tratti in comune con quello generale delle Alpi Apuane dove gli acquiferi sono generalmente contenuti nei litotipi carbonatici caratterizzati da elevata permeabilità per fratturazione e carsismo. Nell'area di indagine, così come nel resto dell'area apuana, questa peculiarità si somma ad un complesso assetto strutturale, dovuto ai processi tettonici che hanno interessato l'area.

L'elevata piovosità (oltre 3.000 mm/anno alle quote più elevate), la permeabilità medio-alta delle rocce carbonatiche, con infiltrazione efficace dell'ordine di 1500-2.000 mm/anno, e l'assetto idrostrutturale favorevole tale da consentire l'accumulo di abbondanti quantitativi di acque sotterranee rendono gli acquiferi carbonatici apuani di importanza strategica in termini di risorse idriche per l'approvvigionamento idropotabile di gran parte della Toscana nord-occidentale, alimentando in parte anche gli stessi acquiferi delle aree di pianura.

4.2. Assetto idrogeologico del bacino del Torrente Baccatoio

Il bacino del Torrente Baccatoio è caratterizzato dalla presenza di due complessi idrogeologici carbonatici principali, caratterizzati da permeabilità secondaria elevata per fessurazione carsismo. Il

principale di questi complessi è costituito dalla successione metasedimentaria carbonatica dell'Unità Autoctono *Auctt.*, in particolar modo dalle formazioni dei Grezzoni e dei Marmi. Tale complesso è delimitato in basso dalle rocce impermeabili o poco permeabili del basamento Paleozoico (Filladi inferiori e Porfiroidi e Scisti porfirici), ed in alto da rocce a permeabilità bassa o medio-bassa delle formazioni giurassiche e cretaciche dell'Autoctono *Auctt.* Il Coefficiente di Infiltrazione Efficace (CIE, parametro che esprime la percentuale di acqua infiltrata che effettivamente alimenta la falda acquifera) per il complesso Grezzoni-Marmi varia tra il 55% e il 75%.

L'altro complesso idrogeologico di importanza notevole è rappresentato da alcune formazioni appartenenti alla Falda Toscana, che nell'area sono in particolare il Calcare cavernoso e brecce poligeniche associate e, secondariamente, i sovrastanti Calcari e marne a *Rhaetavicula contorta*, affioranti quasi solo esclusivamente sul M. Gabberi. Il valore di CIE stimato per un complesso idrogeologico di questo tipo è mediamente intorno al 50%, localmente superiore. Gli spessori più ridotti lo rendono tuttavia un acquifero dalle potenzialità leggermente inferiori rispetto all'acquifero della serie metamorfica.

Questi complessi idrogeologici, ed in particolare il sistema del Calcare cavernoso e brecce poligeniche, che chiudono con una soglia di permeabilità a contatto con le formazioni dell'Unità di Massa nei pressi di Valdicastello, sono state definite "Sistema idrogeologico di Valdicastello". In Tab. 4.1 è riportata una classificazione delle formazioni affioranti nell'area di indagine in base al

In Tab. 4.1 è riportata una classificazione delle formazioni affioranti nell'area di indagine in base al coefficiente di permeabilità, ottenuta integrando dati di letteratura con osservazioni di campagna. Su questa base sono state interpretate anche le sezioni idrogeologiche esposte nei paragrafi successivi.

Formazione	Tipo di permeabilità	Grado di permeabilità
Grezzoni, Marmi, Calcare cavernoso	Fratturazione e carsismo	Alta o molto alta $K > 10^4 \text{ m/s}$
Calcari e marne a Rhaetavicula contorta, Metacalcari selciferi	Fratturazione e carsismo	Media o medio-alta $10^{-6} < K < 10^{-4}$ m/s
Formazione di Vinca, Pseudomacigno	Fratturazione	Medio-bassa a bassa $10^{-8} < K < 10^{-6} \text{ m/s}$
Formazione di Monte Folgorito; Filladi Inferiori; Porfiroidi e Scisti porfirici; Scisti sericitici	Fratturazione	Poco permeabili o impermeabili $K < 10^{-8} \text{ m/s}$

Tab. 4.1: Classificazione in base alla permeabilità delle formazioni presenti nel bacino del Torrente Baccatoio (K = coefficiente di conducibilità idraulica).

4.3. Le sorgenti del bacino idrografico del Torrente Baccatoio

Il bacino del Torrente Baccatoio è caratterizzato da numerose scaturigini naturali, alcune di queste utilizzate per approvvigionamento idropotabile. Le sorgenti principali (di importanza per la caratterizzazione idrogeologica e non necessariamente selezionate per la campionatura) sono state individuate attraverso rilievi di terreno, segnalazioni della popolazione del luogo, reperendo informazioni presso il locale gestore idrico, ed utilizzando la Carta Geologica della Regione Toscana, foglio 260 (sezione 260040 – Viareggio) e la Carta delle grotte e delle sorgenti delle Alpi Apuane.

Sono state realizzate alcune sezioni idrogeologiche qualitative che permettono di interpretare, con buona approssimazione, l'assetto idrostrutturale generale dell'intero bacino. Le sezioni sono state realizzate sulla base della già citata Carta Geologica della Toscana, foglio 260 (sezione 260040 - Viareggio) e della carta *Geological map of the Stazzema area (Alpi Apuane, Northern Apennines, Italy)*.

Le localizzazione di alcune delle principali sorgenti all'interno del bacino del Torrente Baccatoio è illustrata in Fig. 4.1 insieme alle tracce delle sezioni.

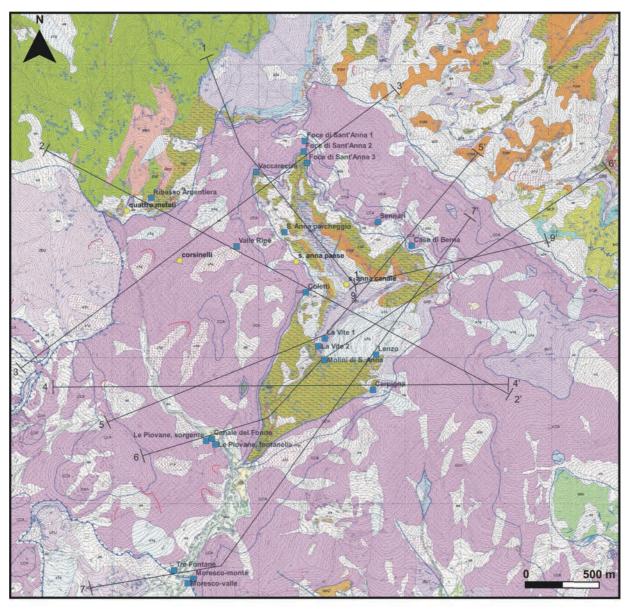


Fig. 4.1a: Estratto della Carta Geologica della Toscana Foglio 260 – Viareggio (sezione 260040). Sono indicate le sorgenti principali dell'area e le tracce delle sezioni.

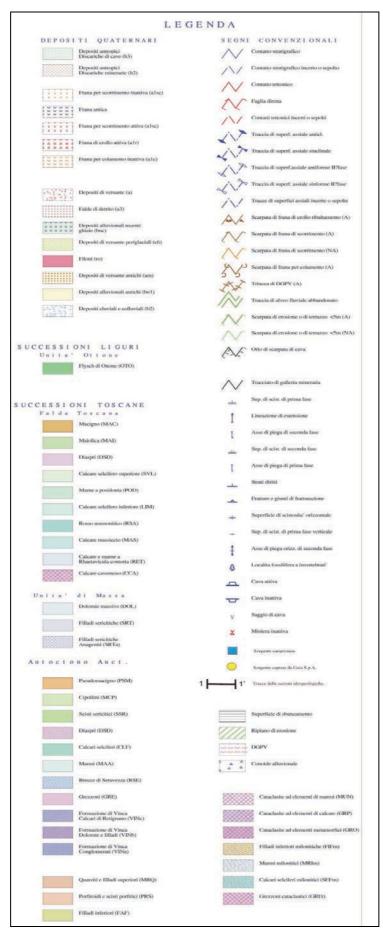


Fig. 4.1b: Estratto della legenda della Carta Geologica della Toscana Foglio 260 – Viareggio (sezione 260040) riportata in fig. 4.1a.

Come si nota sulla carta di Fig. 4.1a, la maggior parte delle sorgenti analizzate è localizzata in corrispondenza del contatto (tettonico) tra l'acquifero carbonatico del Calcare cavernoso e brecce poligeniche – acquifero geometricamente superiore dell'area – e il sottostante basamento poco permeabile o impermeabile costituito principalmente dalle Filladi inferiori al nucleo della Finestra tettonica di Sant'Anna di Stazzema. Ciò è ben evidente nelle sezioni esemplificative riportate in Figg. 4.2, 4.3 e 4.4 (sezioni idrogeologiche 3-3', 2-2', 7-7', rispettivamente).

Le sorgenti che drenano l'acquifero del Calcare cavernoso sono riconducibili prevalentemente a sorgenti per soglia di permeabilità sottoposta, ovvero sorgenti in cui il complesso roccioso meno permeabile sottoposto all'acquifero determina un trabocco delle acque sotterranee. Ciò si rileva ad esempio nelle sorgenti Coletti (Fig. 4.3), Lenzo-VSLNZ (Fig. 4.4).

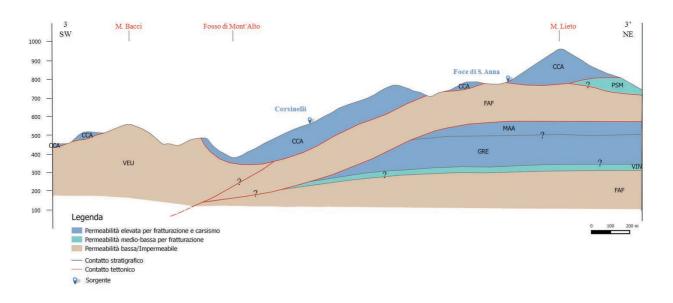


Fig. 4.2: Sezione 3-3' (CCA: Calcare cavernoso; PSM: Pseudomacigno; MAA: Marmi; GRE: Grezzoni; VIN: Formazione di Vinca; VEU: Formazione della Verruca-Civitella; FAF: filladi inferiori).

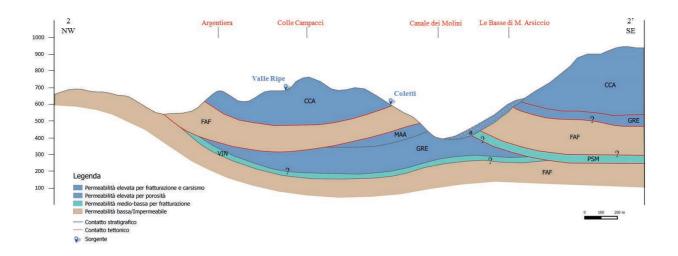


Fig. 4.3: Sezione 2-2'. (CCA: Calcare cavernoso; PSM: Pseudomacigno; MAA: Marmi; GRE: Grezzoni; VIN: Formazione di Vinca; VEU: Formazione della Verruca-Civitella; FAF: filladi inferiori).

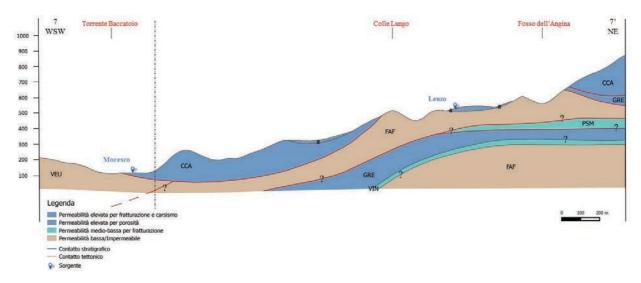


Fig. 4.4: Sezione 7-7' (CCA: Calcare cavernoso; PSM: Pseudomacigno; MAA: Marmi; GRE: Grezzoni; VIN: Formazione di Vinca; VEU: Formazione della Verruca-Civitella; FAF: filladi inferiori).

Lo spessore del Calcare cavernoso e brecce poligeniche associate, sede della circolazione idrica associata a queste sorgenti, è assai variabile. Nella parte nord-orientale, esso mostra gli spessori minori di tutta l'area (sezioni 3-3', Fig. 4.2), nell'ordine di un centinaio di metri. Ciò è in accordo con le portate delle sorgenti rilevate in questa porzione di acquifero, che sono modeste e risentono della stagionalità.

Nel settore nord-occidentale sono localizzate sorgenti perenni più rilevanti in termini di risorse idriche (Fig. 4.1), alcune delle quali utilizzate dal gestore del servizio idrico (S. Anna Paese-VSPAE e S. Anna Parcheggio-VSPAR). Anche in questo caso, lo schema idrostrutturale pare assimilarle alle sorgenti del settore nord-orientale, ovvero sorgenti per soglia di permeabilità sottoposta.

Nei settori centrale e meridionale dell'area, l'acquifero del Calcare cavernoso raggiunge i suoi massimi spessori, come risulta anche dalla sezione 4-4' (Fig. 4.5). In questi settori sono presenti alcune sorgenti utilizzate a scopi idropotabili, quali Carpigna-VSCRP, Lenzo-VSLNZ e Moresco (Moresco Galleria-VSMOG, Moresco Alta-VSMOA e Moresco Sondaggio-VSMOS) in sinistra idrografica del Torrente Baccatoio e la sorgente Tre Fontane-VSTRF, non captata, in destra idrografica).

Le sorgenti Carpigna e Lenzo drenano verosimilmente un complesso idrogeologico costituito dal Calcare cavernoso e da un livello di Grezzoni in contatto tettonico con il Calcare cavernoso, come risulta evidente sempre nella sezione 4-4' (Fig. 4.5).

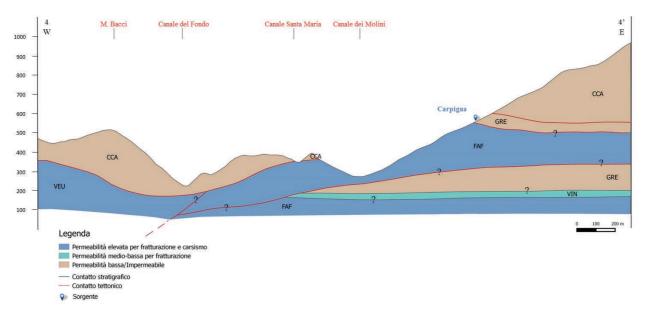


Fig. 4.5: Sezione 4-4' (CCA: Calcare cavernoso; GRE: Grezzoni; VIN: Formazione di Vinca; VEU: Formazione della Verruca-Civitella; FAF: filladi inferiori).

La sorgente Moresco è l'unica sorgente che drena il settore sud-occidentale dell'acquifero del Calcare cavernoso. Dalle osservazioni sul luogo e da informazioni reperite presso popolazione locale e gestore idrico, sembra una sorgente di elevata potenzialità in termini di risorsa idrica, verosimilmente legata ad una maggiore estensione dell'area di alimentazione. Lo spessore dell'acquifero sotteso supera i 300-400 m. Come accennato in precedenza, la sorgente Moresco è costituita in realtà da tre scaturigini diverse, Moresco Alta, Moresco Galleria (fig. 4.6) e Moresco Sondaggio. Attualmente, la sorgente Moresco Galleria è l'unica che alimenta l'acquedotto di Valdicastello (dopo la dismissione di Molini di S. Anna) e sembra non mostrare particolari contaminazioni, mentre Moresco Alta e Moresco Sondaggio rivelano un certo tenore di tallio. Questo è un aspetto piuttosto interessante e non ancora chiarito, ovvero i rapporti che sussistono tra scaturigini così vicine ma alquanto diverse in termini di caratteristiche geochimiche. Studi pregressi commissionati dal gestore idrico stesso hanno messo in evidenza una interconnessione idraulica tra le acque del Torrente Baccatoio e le sorgenti suddette (ma non Moresco Galleria), che si trovano in effetti molto prossime all'alveo del corso d'acqua.

Fig. 4.6: Interno delle sorgenti Moresco Alta (a sinistra) e Moresco Galleria (a destra).

Sempre nel settore meridionale, ma dalla parte opposta rispetto a Moresco, e quindi in destra idrografica del torrente, è presente la sorgente denominata Tre Fontane. Sia le sorgenti Moresco che la sorgente Tre Fontane sono localizzate in corrispondenza del contatto tettonico tra l'acquifero del Calcare cavernoso e le filladi sericitiche e quarziti dell'Unità di Massa, che nel settore meridionale dell'area costituiscono verosimilmente il basamento impermeabile dell'acquifero.

La diversa potenzialità in termini di risorse idriche tra il settore settentrionale e il settore meridionale dell'acquifero del Calcare cavernoso potrebbe essere legata, come già accennato, ai maggiori spessori della parte meridionale, a una diversa estensione delle aree di alimentazione e anche al fatto che il livello di base di emergenza del settore meridionale è localizzato a quote inferiori rispetto ai margini settentrionali dell'acquifero, condizionando il percorso delle acque sotterranee verso il versante versiliese.

L'altro acquifero presente nell'area di indagine, disposto geometricamente al di sotto rispetto a quello del Calcare cavernoso e brecce poligeniche è l'acquifero delle successioni metasedimentarie carbonatiche dell'Autoctono *Auctt*. (sezione 1-1', Fig. 4.7; sezione 5-5', Fig. 4.8), ed in particolare Grezzoni e Marmi. Si tratta dell'acquifero probabilmente più importante, in termini di risorse e riserve idriche, dell'intera catena montuosa, se si considera che anche il sistema idrogeologico carsico del M. Corchia è in gran parte compreso in questi litotipi. Nel caso del bacino del Torrente Baccatoio, esso è rappresentato quasi esclusivamente dalla Formazione dei Grezzoni, poiché l'evoluzione tettonica ha determinato un assottigliamento della successione metasedimentaria carbonatica, per cui i marmi affiorano limitatamente e non mostrano spessori significativi. Tale complesso acquifero mostra importanti spessori e significativa estensione, con collegamenti idraulici esterni allo spartiacque del bacino, probabilmente anche con le zone di affioramento ed alimentazione del M. Corchia e del M. Alto.

Le due scaturigini con cui si manifesta la sorgente denominata La Vite-VSVIT (Fig. 4.8) appartengono probabilmente ad un unico fronte sorgivo ubicato in destra idrografica del Torrente Baccatoio e sembrerebbero drenare questo acquifero. In prima approssimazione, sulla base delle sezioni idrogeologiche interpretate, potrebbe trattarsi di una sorgente per affioramento della piezometrica di un acquifero in pressione, anche se la complessità geologico-strutturale dell'area richiede un approfondimento di indagine.

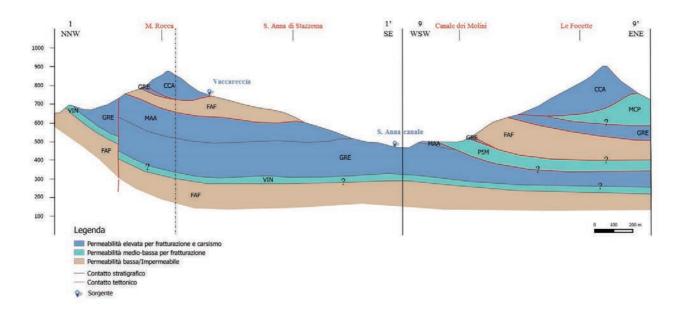


Fig. 4.7: Sezioni 1-1' e 9-9' (CCA: Calcare cavernoso; PSM: Pseudomacigno; MCP: Cipollini; MAA: Marmi; GRE: Grezzoni; VIN: Formazione di Vinca; FAF: filladi inferiori).

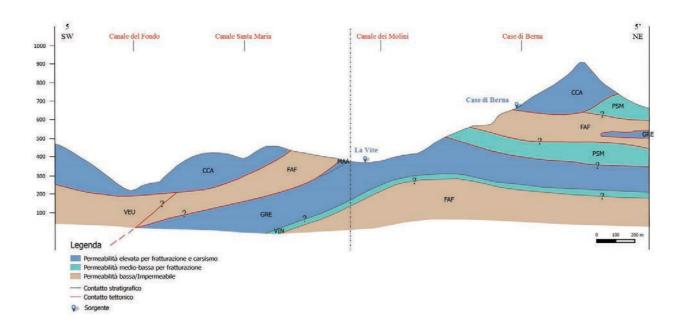


Fig. 4.8: Sezione 5-5' (CCA: Calcare cavernoso; PSM: Pseudomacigno; MAA: Marmi; GRE: Grezzoni; VIN: Formazione di Vinca; VEU: Formazione della Verruca-Civitella; FAF: filladi inferiori).

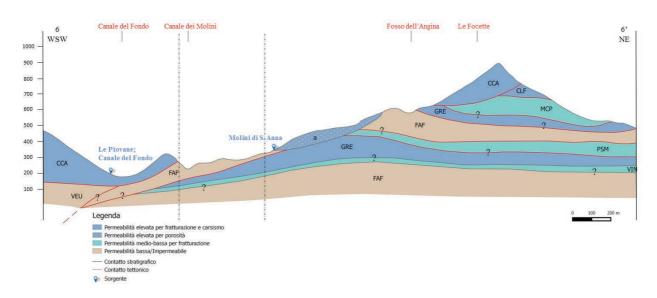


Fig. 4.9: Sezione 6-6' (a: depositi di versante; CCA: Calcare cavernoso; PSM: Pseudomacigno; MCP: Cipollini; MAA: Marmi; GRE: Grezzoni; VIN: Formazione di Vinca; VEU: Formazione della Verruca-Civitella; FAF: filladi inferiori).

In sinistra idrografica del Torrente Baccatoio, alla quota di 312 m s.l.m. è ubicata la sorgente Molini di Sant'Anna-VSMSA, verosimilmente la più importante in termini di portata dell'intero bacino (con valori anche significativamente superiori a 20 l/s) (Figg. 4.1, 4.10, 4.11).

Tale sorgente da tempo costituisce una delle risorse idriche principali dell'area (il bottino di presa riporta una targa che indica il 1951 come data di realizzazione). Recenti analisi effettuate dal Dipartimento di Scienze della Terra dell'Università di Pisa hanno rilevato la presenza di alcuni metalli tossici e potenzialmente tossici, ed in particolare tallio, in concentrazioni significative nella

rete idropotabile. Il gestore idrico, individuando nella sorgente Molini di S. Anna la causa, l'ha posta in scarico nel torrente, togliendola dalla rete idropotabile a partire dal 23 settembre 2014. Dalle informazioni raccolte presso residenti e lo stesso gestore idrico, la sorgente, oltre ad avere una portata significativa, seppur risentendo della stagionalità delle piogge, è sempre stata caratterizzata da una certa torbidità, tanto da dotare il serbatoio di recapito (denominato serbatoio "Parigi") di un sistema di controllo torbidimetrico in grado di disattivare la sorgente dal sistema in caso di superamento di una determinata soglia.

Fig. 4.10: Bottino di presa della sorgente Molini di S. Anna (a sinistra) e i relativi tubi di scarico (a destra).

Osservando le Figg. 4.1 e 4.11 e la sezione di Fig. 4.9, la scaturigine si colloca ai piedi di un esteso corpo di frana in roccia, che include mega-blocchi di rocce mineralizzate a barite, pirite e idrossidi di ferro e manganese, oggetto di antiche coltivazioni a cielo aperto.

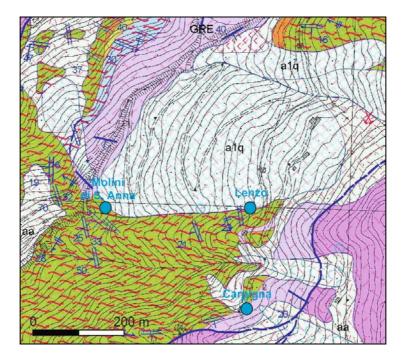


Fig. 4.11: Dettaglio della carta geologica di fig. 4.1 con ubicazione delle sorgenti Molini di S. Anna, Lenzo e Carpigna.

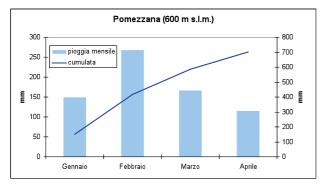
Lo schema classificativo di questa sorgente è quindi molto importante per cercare di capire i rapporti tra le acque sotterranee di buona qualità e il sistema di mineralizzazioni. Purtroppo, la presenza stessa del corpo di frana non agevola l'interpretazione, nascondendo i rapporti tra le

idrostrutture. Attualmente, sulla base degli studi sinora condotti, due possono essere le possibili interpretazioni:

- scaturigine naturale analoga a Carpigna e Lenzo, alimentata dal complesso idrogeologico del Calcare cavernoso e da livelli di Grezzoni in contatto con il Calcare cavernoso (fig. 4.11). Si tratterebbe quindi di una sorgente cosiddetta "geologica", ovvero in posizione "idrogeologica" analoga a quelle di Carpigna e Lenzo, ma nascosta sotto la coltre del corpo di frana, nel quale si infiltra, arricchendosi chimicamente in base alla caratteristiche geochimiche delle rocce e delle mineralizzazioni presenti nel corpo di frana stesso; quindi, dopo un percorso più o meno lungo dentro il corpo di frana, la scaturigine si manifesta nella zona di valle del piede di frana. L'area di alimentazione sarebbe quindi quella del Calcare cavernoso e del livello superiore dei Grezzoni, con in aggiunta le precipitazioni che si infiltrano nel corpo di frana stesso.
- scaturigine naturale posta al livello di base di emergenza, nel bacino del Torrente Baccatoio, dell'acquifero inferiore costituito dai Grezzoni dell'Autoctono *Auctt*. sottostanti, il cui punto affiorante posto alla quota più bassa coincide con il punto di contatto tra le Filladi inferiori, i Grezzoni e il corpo di frana.

In ambedue gli schemi idrostrutturali potrebbe aggiungersi un ulteriore elemento: la contaminazione della scaturigine da parte del Torrente Baccatoio (Canale dei Molini), le cui acque si infiltrerebbero nel corpo di frana nella parte più a monte, contaminando quindi anche la sorgente.

Queste ipotesi necessitano inevitabilmente di approfondimenti che saranno effettuati nel prosieguo dello studio.


4.4. Sintesi pluviometrica antecedente la I campagna di campionamento

Al fine di quantificare le piogge nel bacino del Torrente Baccatoio sono state prese in considerazione le due stazioni pluviometriche più prossime, ovvero quella di Pietrasanta (4.5 m s.l.m.), ubicata sul conoide del torrente, e quella di Pomezzana (600 m s.l.m.), appena oltre lo spartiacque del bacino, all'interno del bacino del Fiume Versilia. Le due stazioni, a quote significativamente diverse, sono in asse con il bacino di studio e permettono quindi di descrivere adeguatamente il contesto pluviometrico. Ambedue le stazioni sono gestite dal Servizio Idrologico della Regione Toscana, dal quale sono stati recuperati i dati. L'ubicazione delle stazioni è riportata in Fig. 4.12.

Fig. 4.12: Ubicazione delle stazioni pluviometriche di Pietrasanta e Pomezzana.

Il periodo di ricarica relativo all'anno 2015 non è stato particolarmente piovoso nell'area in esame, anche se è stato preceduto da un autunno 2014 piuttosto piovoso (995.6 e 628.8 mm da settembre a dicembre a Pomezzana e Pietrasanta, rispettivamente). Come si evince dai grafici che mostrano l'andamento delle piogge da gennaio ad aprile alle due stazioni considerate, si nota come a Pomezzana e a Pietrasanta durante il quadrimestre siano piovuti 702.6 mm e 325.2 mm, rispettivamente (Fig. 4.13).

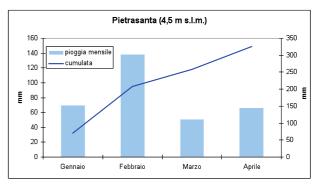


Fig. 4.13: Andamento della pioggia mensile da gennaio ad aprile 2015 nelle stazioni di Pomezzana (sinistra) e Pietrasanta (destra).

In realtà, volendo considerare esattamente la pioggia caduta dall'inizio di gennaio fino al giorno precedente l'inizio della I campagna di monitoraggio, bisogna togliere 65,4 mm e 34,0 mm ai quantitativi precedenti, poiché proprio nei giorni della campagna ci sono stati alcuni episodi piovosi significativi. Pertanto, la pioggia caduta nei mesi precedenti alla campagna risulta di 637.2 mm a Pomezzana e 291.2 mm a Pietrasanta.

Nel complesso, si nota come il rapporto tra i quantitativi di precipitazione tra Pietrasanta e Pomezzana può essere considerato approssimativamente dell'ordine di 1 a 2.

In sintesi, pertanto, dopo un autunno piuttosto piovoso, i circa quattro mesi precedenti la campagna sono stati caratterizzati da piogge modeste e poco frequenti.

5. Campionamenti

La localizzazione delle stazioni di campionamento è riportata nella Appendice A e graficamente nella fig. 5.1.

Sorgenti, acque superficiali, pozzi, drenaggi effluenti minerari, suoli e piante

I campionamenti di sorgenti, acque superficiali e pozzi sono stati effettuati nei giorni 27-29 aprile 2015. I drenaggi minerari sono stati invece campionati il 12 maggio 2015, in modo da consentire la presenza di ARPAT (Dipartimento di Lucca) per la relativa validazione.

Come nomenclatura, le sigle dei campioni sono composte da 5 lettere: la prima identifica il progetto (V= Valdicastello Carducci), la seconda la tipologia del sito campionato (T=torrente, S=sorgente, D=drenaggio minerario, P=pozzo), le ultime tre identificano il sito per torrente, sorgenti e drenaggi (es. MSA=Molini di Sant'Anna) o il tipo e la numerazione per i pozzi (es. S01=pozzo superficiale n. 01; P01: pozzo profondo n. 01).

Il campionamento dei suoli comprende suoli ad uso privato con destinazione orticola e suoli su discariche minerarie distribuiti lungo l'abitato di Valdicastello e a monte di questo, con l'aggiunta di alcune stazioni nel conoide del torrente a valle della SS 439 "Sarzanese". Al campionamento dei suoli è stato associato quello di specie orticole, arboree e erbacee.

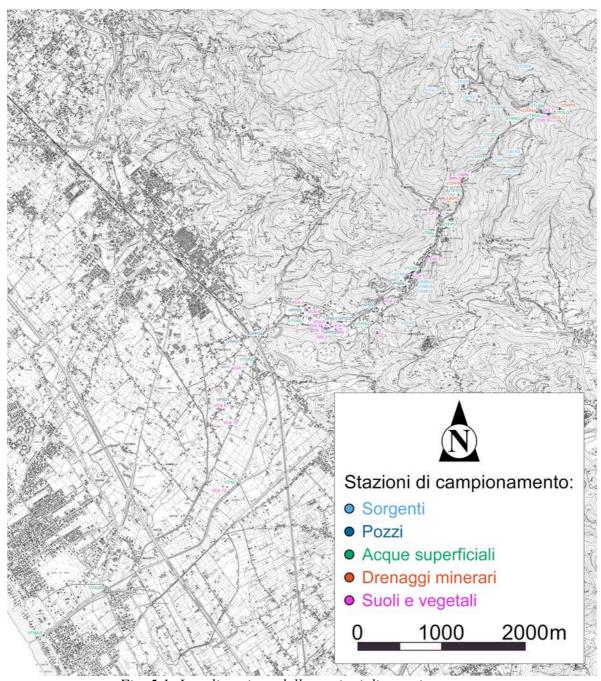


Fig. 5.1: Localizzazione delle stazioni di campionamento

Nel dettaglio:

Sorgenti

Sono state campionate sette sorgenti non captate. In particolare le sorgenti denominate "Foce di Sant'Anna" (VSFSA), "Case Sennari" (VSSEN), "Vaccareccia" (VSVAC) e "Valle Ripe" (VSVLR) scaturiscono a quote superiori ai 700 m s.l.m. dalle formazioni carbonatiche noricoretiche della Falda Toscana (Calcare cavernoso e in minima parte Calcari e marne a *Rhaetavicula contorta*), spesso in prossimità del contatto tettonico con le sottostanti rocce scistose e quarzitiche paleozoiche del basamento metamorfico (Formazione delle Filladi inferiori). Le sorgenti "La Vite" (VSVIT) e "Dal Deo" (VSDAD) scaturiscono a quote inferiori (rispettivamente 290 e 160 m s.l.m.) ed emergono al contatto tra le rocce dolomitiche della Formazione dei Grezzoni e gli scisti

paleozoici (VSVIT) o al contatto tra il Calcare cavernoso e le filladi sericiti che e quarziti dell'Unità di Massa (VSDAD).

Tutte queste sorgenti sono caratterizzate da portate modeste (<1 l/s nel periodo della I campionatura), e le osservazioni pregresse indicano cospicue variazioni stagionali. Solo la sorgente "La Vite" presenta una portata maggiore di 1 l/s ma difficilmente quantificabile per le modalità di emergenza.

Nove sorgenti all'interno del bacino del Torrente Baccatoio sono captate dal gestore idrico per alimentare la rete idropotabile. Tra queste, la sorgente Molini di Sant'Anna (VSMSA), dopo la verifica della contaminazione da tallio, è stata esclusa dalla rete di distribuzione a partire dal 23 settembre 2014, come accennato in precedenza. Attualmente le acque di questa sorgente vengono scaricate direttamente nel torrente Baccatoio. Per il sistema sorgentizio di Moresco sono state campionate le sorgenti denominate Moresco Alta (VSMOA), Moresco Sondaggio (VSMOS), e Moresco Galleria (VSMOG); solo quest'ultima viene attualmente utilizzata nella rete di distribuzione. Le altre sorgenti captate e campionate sono: Sant'Anna Paese (VSPAE), Sant'Anna Parcheggio (VSPAR), Sant'Anna Canale (VSCAN), Lenzo (VSLNZ) e Carpigna (VSCRP).

Acque superficiali

Sono stati campionati 15 punti del Torrente Baccatoio distribuiti lungo tutta l'asta fluviale dalla sorgente fino alla foce. Ciò al fine di estendere la caratterizzazione, in particolare per quanto riguarda il trasporto di tallio. Il campione a quota più elevata (585 m s.l.m.) coincide con il drenaggio della galleria mineraria denominata Ribasso del Pianello 2 (campione VDRPN). Per la maggior parte dell'anno questo drenaggio può essere a tutti gli effetti considerato la sorgente del torrente Baccatoio. Gli altri punti campionati lungo il torrente sono stati scelti opportunamente per valutare gli effetti dell'apporto di affluenti e di drenaggi minerari dai vari cantieri di coltivazione dismessi, delle discariche minerarie (M. Arsiccio, Pollone, Rezzaio) e delle vasche di decantazione poste a valle di loc. Regnalla.

Drenaggi minerari

Nonostante i due principali cantieri minerari dell'area di interesse (Miniera del Pollone e Miniera di M. Arsiccio) presentino numerosi imbocchi di gallerie ancora aperti e accessibili, quelli dai quali defluiscono in modo continuo acque di drenaggio sono in numero ristretto. Per la Miniera di M. Arsiccio sono significativi i drenaggi della gallerie Ribasso del Pianello 2 (VDRPN; 585 m s.l.m.), Sant'Olga (VDOLG; 524 m s.l.m.) e Sant'Erasmo (VDSRM; 482 m s.l.m.). Quest'ultima galleria riveste la massima importanza essendo la galleria a quota più bassa scavata nella Miniera di M. Arsiccio ed essendo stata realizzata specificamente con il ruolo di collettore verso l'esterno dei drenaggi minerari.

Per la Miniera del Pollone gli unici drenaggi significativi sono quelli che fuoriescono dalla galleria a quota 228 m s.l.m. (VDPFR) e principalmente dalla galleria del Ribasso del Pollone (VDRPO; 174 m. s.l.m.). Quest'ultima rappresenta la galleria a quota più bassa della Miniera del Pollone e drena quindi gran parte dei cantieri minerari. Tutti questi drenaggi mostrano forti variazioni stagionali di portata, pur rimanendo attivi tutto l'anno.

$P_{077}i$

Al fine di verificare lo stato della falda freatica contenuta nel materasso alluvionale e in diretto contatto con le acque del torrente, in riferimento alla presenza di tallio ed altri contaminanti, sono stati campionati anche 5 pozzi superficiali (profondità inferiore a 15 m). In aggiunta, sono stati campionati 4 pozzi profondi (profondità presunta superiore a 40-50 m) che captano una falda più profonda contenuta nel bedrock sottostante il materasso alluvionale ed attualmente di natura ignota.

Le stazioni VTLBN, VTDBA, VTBAL, VTSRZ, VTINC, VDRPN, VDOLG, VDSRM, VDPFR, VDRPO sono state campionate congiuntamente ad ARPAT (Dip. di Pietrasanta e di Lucca) per la validazione dei dati.

Suoli e piante

Il campionamento nelle diverse stazioni è stato effettuato prelevando per ogni sito campioni di suolo in superficie (0-10 cm), a media profondità (10-30 cm), in profondità (*Sub soil* = 80-100 cm) e di interfaccia con gli apparati radicali. E' stato inoltre eseguito il prelievo per ogni sito di prodotti agricoli da coltivazioni irrigue o non irrigue, di briofite come bio indicatori naturali e di vegetazione naturale. Alcune delle fasi e delle specifiche dei campionamenti sono mostrate nella figura 5.2, nelle sue varie parti.

Fig. 5.2: Esempi delle stazioni di campionamento. Coltivazioni orticole siti VCA1 (a.), VCA2 (b.) e VCA6 (c.). Paesaggio (d.) e profilo (e.) del sito DIS3. Paesaggio (f.) e profilo (g.) del sito DIS4.

Comunità microbiche

All'interno delle gallerie dismesse possono svilupparsi comunità di più specie batteriche che, attraverso le loro reazioni metaboliche, accelerano i processi di ossidazione dei solfuri fino a diversi ordini di grandezza.

I siti di campionamento delle comunità microbiche sono i seguenti:

- gallerie Ribasso Pianello 2, Sant'Olga, Sant'Anna (Miniera di M. Arsiccio);
- galleria Rosina (Miniera del Pollone).

I campionamenti sono stati effettuati in data 29 aprile 2015 e, per il sito relativo alla galleria Sant'Olga, anche in data 30 marzo 2014. Per ogni sito, sono state effettuate diverse tipologie di campionamento, come di seguito specificato:

- campioni di acqua localizzata all'esterno della miniera, in stretta prossimità dell'ingresso;
- campioni di acqua proveniente da stillicidi;
- campioni di acqua con presenza di materiale di aspetto mucillaginoso;
- campioni di acqua con frammenti di roccia sgretolata localizzata sotto materiale di aspetto mucillaginoso;
- campioni di acqua con presenza di materiale mucillaginoso di color rosa localizzata all'interno di pozze di acqua stagnante;
- campioni di acqua caratterizzata da una patina superficiale di colore bianco e localizzata all'interno di pozze di acqua stagnante di colore rosso intenso.

Ciascun campione è stato etichettato con 2 sigle consecutive; la prima sigla si riferisce al sito di studio, mentre la seconda corrisponde alla tipologia di campionamento, secondo le seguenti modalità:

Siti di studio:

- galleria Ribasso Pianello 2, Min. di Monte Arsiccio (sigla PIA2);
- galleria Sant'Olga, Min. di Monte Arsiccio (sigla OLG);
- galleria Sant'Anna, Min. di Monte Arsiccio (sigla ANN);
- galleria Rosina, Min. del Pollone (sigla POL).

Tipologie di campionamento:

- campioni di acqua localizzata all'esterno della miniera (sigla EXT);
- campioni di acqua proveniente da stillicidi (sigla STL);
- campioni di acqua con presenza di materiale di aspetto mucillaginoso (sigla SLM);
- campioni di acqua con frammenti di roccia sgretolata (sigla RCK);
- campioni di acqua con presenza di materiale mucillaginoso di color rosa (sigla PLA);
- campioni di acqua all'interno di pozze di acqua stagnante di colore rosso intenso (sigla RED).

Esempi di siti e materiali campionati sono riportati in Figura 5.3

Fig. 5.3: Esempi di tipologie di campionamento in differenti siti di studio (a. PIA2-EXT; b. OLG-STL; c. PIA2-SLM; d. OLG-RCK; e. PIA2-PLA; f. POL-RED).

6. Metodologie analitiche

Acque

Sono stati misurati in situ per ogni stazione: temperatura dell'acqua ed atmosferica, pH, Eh, conducibilità elettrica (con opportuna correzione della salinità se necessario), ossigeno disciolto. Opportune aliquote di campione distinte in: tal quale, filtrato 0.45 µm con filtri di nylon, filtrato 0.45 µm ed acidificato con acido nitrico ultrapuro sono state raccolte in contenitori di polietilene precondizionati per le analisi di laboratorio di ioni maggiori, tracce ed isotopiche. I campioni sono stati conservati in frigorifero a temperatura < 4 °C.

Le analisi di anioni e cationi maggiori sono state ottenute rispettivamente in cromatografia ionica (Dionex DX 100/500) e tramite ICP-OES (Perkin-Elmer Optima 2000 DV). Le analisi di elementi in traccia sono state effettuate tramite spettrometria ICP-MS (Perkin-Elmer NexION 300x).

Suoli e piante

I campioni di suolo e dei vegetali vengono essiccati in stufa ventilata ad una temperatura costante di 50°C e successivamente macinati finemente mediante mulino a palle. Circa 250 mg di suolo

finemente macinato vengono fatti reagire in acqua regia (AR) (1:3, v/v; HNO₃:HCl sovrapuri), mentre 250 mg di polvere vegetale vengono attaccati con una soluzione 1.3, v/v; H₂O₂:HNO₃ sovrapuri). In ambedue i casi si procede alla mineralizzazione mediante forno a microonde (Start D 1200, Milestone, USA). Il mineralizzato viene portato a volume (20 ml) previo filtraggio in Wathmann 42. La concentrazione degli elementi presenti nella soluzione viene determinata mediante ICP-OES (Ametek, Germania). La calibrazione dell'ICP-OES viene effettuata mediante standard internazionali (BCR-990 e BCR-320R) e nazionali (AMS-ML1 e AMS-MO1).

Comunità microbiche

I campionamenti sono stati effettuati per mezzo di bottiglie di polietilene sterili (capacità: 250 ml) e, una volta raccolti, i campioni sono stati conservati a 4 °C e successivamente trasportati in laboratorio per le analisi.

Per ciò che concerne l'analisi della componente procariotica (batteri), un'aliquota di ciascun campione è stato immediatamente sottoposto all'estrazione di DNA, mentre per quanto riguarda la componente eucariotica (protisti), l'analisi ha previsto un trattamento iniziale diverso dei campioni rispetto a quello adottato per la componente procariotica. In particolare, un'aliquota di circa 30 ml di ciascun campione è stato sottoposto ad una prima osservazione mediante l'ausilio di uno stereo-microscopio e successivamente di un microscopio ottico, allo scopo di scoprire l'eventuale presenza di forme unicellulari dalle caratteristiche morfologiche tipiche dei protisti (presenza di cilia, flagelli, ecc.). Ciascuna cellula individuata è stata singolarmente isolata mediante l'ausilio di una micro-pipetta ed utilizzata per avviare una coltura mono-clonale. Le diverse colture, attualmente in fase di sviluppo, saranno successivamente utilizzate come materiale da cui estrarre il DNA per l'identificazione delle diverse specie, con un approccio genetico simile a quello utilizzato per la componente procariotica.

Il DNA totale è stato estratto dai campioni liquidi mediante il metodo fenolo/cloroformio, con una piccola modifica rispetto al protocollo. Per aumentare la quantità e la qualità della frazione di DNA ottenuta e per ridurre l'effetto negativo di eventuali inibitori della "reazione a catena della polimerasi" (PCR), la procedura di isolamento del DNA iniziava con una centrifugazione di un volume totale di 1 ml di campione liquido a 1000 giri/min per 2 minuti, allo scopo di eliminare il pellet inorganico. Il sopranatante è stato ulteriormente centrifugato a 5000 giri/min per 15 minuti. Il deposito cellulare ottenuto è stato lavato due volte con un tampone fosfato salino pH 1.2 e le cellule sono state infine risospese in 500 µl di PBS, prima di essere sottoposte alla procedura di estrazione del DNA secondo il metodo fenolo/cloroformio. La quantificazione del DNA estratto ed opportunamente diluito è stata determinata mediante tecnica spettrofotometrica. Le reazioni di amplificazione genica sono state effettuate tramite PCR.

7. Riferimenti normativi per acque, suoli e piante

Il D. Lgs. 152/2006 riporta le concentrazioni soglia di contaminazione (CSC) nelle acque per una serie di contaminanti inorganici. Nel precedente "Documento programmatico per la messa in sicurezza/bonifica del torrente Baccatoio" le CSC utilizzate per le acque effluenti dalle gallerie minerarie e per le stesse acque superficiali del torrente Baccatoio sono quelle riportate in Tabella 3, Allegato 5, Parte terza del D.Lgs. 152/2006 stesso, relative ai "Valori limite di emissione in acque superficiali ed in fognatura". Queste non prevedono una CSC per il tallio. In effetti, essendo l'attività mineraria nell'area di studio ormai inattiva, le acque che costituiscono i drenaggi dalle gallerie minerarie dismesse sembrano configurarsi più propriamente come acque sotterranee così come definite dall'Art. 54 del D.Lgs. 152/2006, che comprendono quindi un valore di CSC per il tallio posto a 2 μ g/L.

Nella presente relazione saranno utilizzate come riferimento le CSC relative alle acque sotterranee come riportati nel D. Lgs. 152/2006.

Nel D. Lgs. 152/2006 vengono inoltre indicati i valori di concentrazione limite accettabili nel suolo

e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti, ovvero ad uso verde pubblico, privato e residenziale e ad uso commerciale e industriale. Nella presente relazione saranno utilizzate come riferimento entrambe le soglie. Nello specifico i valori di CSC di Tl nel suolo nelle due tipologie di sito sono rispettivamente 1 e 10 mg/kg.

I riferimenti relativi ai limiti di concentrazione di microelementi e metalli pesanti nei vegetali sono carenti. Per quanto riguarda le matrici vegetali, sono stati presi in considerazione valori di concentrazione individuati dall'Unione Europea nell'ambito dello studio "Soil pollution by heavy metals - PE-SO 89.5a, Strasbourg 24 April 1989". I risultati di tale studio definiscono i valori comuni nelle piante ed i valori critici per la loro crescita (Tab. 7.1). Da sottolineare come tali valori siano solo indicativi in funzione del tipo di suolo che ospita la pianta e nel variare delle concentrazioni critiche secondo l'organo e l'età della pianta.

Elemento	Valori comuni	Valori critici
Cadmio	<0.1-1	5-10
Cobalto	0.01-0.5	10-20
Cromo	<0.1-1	1-2
Rame	3-15	15-20
Mercurio	<0.1-0.5	0.5-1
Nichel	0.1-5	20-30
Piombo	1-5	10-20
Tallio	< 0.5-5	20-30
Zinco	15-500	150-200

Tab. 7.1: Valori di concentrazione comune e critica di alcuni metalli pesanti per la crescita delle piante. I valori sono espressi in mg/kg

L'Unione Europea (UE), mediante il *regolamento (CE) n. 1881/2006 del 19 dicembre 2006*, ha stabilito i tenori massimi di alcuni contaminanti, al fine di ridurne la presenza nei prodotti alimentari ai livelli minimi che possano consentire ragionevolmente buone procedure di fabbricazione o agricole. L'obiettivo è ottenere un livello elevato di protezione della salute pubblica, in particolare per quanto riguarda i gruppi sensibili della popolazione: bambini, persone allergiche. Nello specifico il regolamento stabilisce le concentrazioni massime di alcuni contaminanti tra cui i metalli pesanti piombo, cadmio, mercurio e lo stagno inorganico (Tab. 7.2), oltre le quali i prodotti alimentari che presentano tali valori non possono essere immessi sul mercato.

Prodotto alimentare	Tenori massimi (mg/kg di peso fresco)			
	Cd	Hg	Pb	Sn
Ortaggi, esclusi quelli del genere Brassica, ortaggi a foglia, erbe aromatiche	0.10	nd	0.10	50
Ortaggi del genere Brassica, ortaggi a foglia e funghi coltivati	0.20	nd	0.30	50

Tab. 7.2: Tenori massimi di alcuni contaminanti in alcuni prodotti alimentari vegetali (Regolamento (CE) n. 1881/2006 del 19.12.2006)

Come già sottolineato l'assorbimento di microelementi e metalli pesanti da parte delle piante differisce in funzione della specie e delle cultivar all'interno della specie: inoltre l'accumulazione varia nei diversi organi di ciascuna pianta (foglie > immagazzinamento radicale > frutti e granella). Generalmente i microelementi contenuti negli organi eduli delle piante (frutti, granella) sono

presenti in concentrazioni minori rispetto alle parti non commestibili (foglie). In tabella 7.3 sono riportati, a scopo esemplificativo, le concentrazioni medie dei metalli pesanti presenti in alcune specie vegetali.

Pianta	Organo -	Concentrazione dei metalli pesanti					
		Cd	Cu	Cr	Ni	Pb	Zn
Ravanello	cima	0.87	8.40	3.30	4.24	3.74	55
	radici	0.66	4.70	1.34	1.72	0.62	43
Carota	cima	0.73	10.20	0.62	1.20	1.08	36
	radice	0.32	6.50	0.40	1.10	0.60	232
Mais dolce	granella	0.16	3.10	0.52	0.34	< 0.10	26
	foglie	0.50	8.30	1.02	1.42	5.38	32

Tab. 7.3: Assorbimento di Cd, Cu, Cr, Ni, Pb, Zn da diversi vegetali. Valori espressi in mg/kg di sostanza secca

8. Risultati

L'insieme dei dati analitici ottenuti sono riportati nella Appendice B.

8.1. Acque

Parametri chimico-fisici

Le sorgenti, sia captate che non captate, hanno temperatura alla emergenza che varia da 10.7 °C a 16.3 °C. Il pH varia nell'intervallo 7.3 – 8.2: i valori più bassi sono in accordo con processi di equilibrio acqua-carbonati sia in sistemi aperti che chiusi rispetto alla CO₂ a partire da acque meteoriche che si arricchiscono in anidride carbonica disciolta, possibilmente attraverso l'interazione con suoli al momento della infiltrazione. I valori più elevati di pH sono consistenti con acque in equilibrio con i carbonati e CO₂ atmosferica in sistemi aperti, suggerendo tempi di residenza minori rispetto ai casi precedenti. La conducibilità elettrica (CE) varia nell'intervallo 287 - 627 μS/cm, indicando il diverso grado di maturazione delle acque attraverso processi di interazione acqua-roccia a scala variabile. La tendenza alla correlazione inversa tra pH e CE è in accordo con l'ipotesi di circolazione più profonda nelle acque con pH minore, in ambiente di sistema chiuso rispetto alla CO₂ ed equilibrio con calcite. La concentrazione di ossigeno disciolto varia da 6.7 a 8.9 mg/L; questi valori sono comunque inferiori rispetto a quanto misurato nelle precipitazioni meteoriche, suggerendo il comportamento non-conservativo di questo elemento che partecipa probabilmente a reazioni di ossidazione, probabilmente della materia organica del suolo, suggerendo il possibile ruolo dell'epicarso nella natura di queste acque. Il potenziale di ossidoriduzione (Eh) varia tra 0.38 e 0.42 V; questi valori non sono riconducibili al ruolo dominante di una singola coppia ossido-riduttiva, e probabilmente rappresentano condizioni di disequilibrio.

I <u>drenaggi</u>, effluenti dalle gallerie minerarie dismesse, hanno temperatura media (13.7 \pm 1.4 °C) più elevata rispetto alle sorgenti (12.8 \pm 1.8 °C); tuttavia le due misure si sovrappongono considerando la deviazione standard (\pm 1 σ). Il pH varia nell'intervallo 1.6 – 4.5, con una variabilità che ha implicazioni dirette sulla stabilità di una serie di elementi tossici e potenzialmente tossici in fase

acquosa. La EC varia tra 755 e 6400 μ S/cm, e risulta inversamente correlata con il pH (R²=0.74) confermando il ruolo dell'aumento del pH nella precipitazione e rimozione di specie altrimenti in soluzione. La concentrazione di ossigeno disciolto varia da 2.4 a 7.9 mg/L, ed è inversamente correlata (R²=0.88) con la EC suggerendo il ruolo di reazioni in cui al consumo di ossigeno è associato il rilascio di specie in fase acquosa. Questa osservazione è interpretabie come una prima evidenza del ruolo della ossidazione dei solfuri nel rilascio di contaminanti alla fase acquosa. Il potenziale di ossido-riduzione varia da 0.48 a 0.82 V; i valori più elevati sono indicativi di condizioni di uguale attività (o comunque prossime all'equilibrio) tra Fe(II) e Fe(III), indicando il ruolo dominante di questa coppia redox con implicazioni sul ciclo del ferro e degli altri elementi tossici e potenzialmente tossici connessi con le condizioni di solubilità/precipitazione di ossidi e idrossidi di Fe.

Le acque superficiali, relative al Torrente Baccatoio, mostrano una temperatura variabile da 11.6 °C a 18.5 °C, progressivamente in aumento dall'alto corso verso la foce, pur con delle dispersioni e con una discontinuità verso temperature più elevate per i due campioni prossimi alla linea di costa. Il pH varia nell'intervallo 2.5 – 8.2, e mostra un progressivo aumento verso la foce con un andamento non lineare. In particolare si nota una discontinuità con un brusco aumento di pH immediatamente a valle della immissione della sorgente Molini di Sant'Anna (in scarico); inoltre, non si notano effetti apprezzabili immediatamente a valle della zona mineraria del Pollone o in corrispondenza di discariche minerarie e delle vasche di sedimentazione. I dati mostrano quindi una efficace azione di tamponamento dell'acidità a partire dalle immissione di acque acide dagli effluenti minerari dell'area di M. Arsiccio, con valori di pH che raggiungono le condizioni di tamponamento tramite carbonati ed equilibrio con la CO₂ atmosferica a valle della SS "Sarzanese", per poi risentire della intrusione marina in prossimità della foce. Le variazioni osservate di pH generano una serie di trasformazioni nella fase acquosa con reazioni di precipitazione di idrossidi di ferro e manganese. Tuttavia, il rilascio di acidità associato a questo processo è comunque tamponato. Il ciclo del ferro che ne deriva condiziona il destino di una serie di elementi tossici e potenzialmente tossici ed il loro partizionamento tra sedimento e soluto. La CE varia nell'intervallo compreso tra 324 e 2540 µS/sm, con un andamento decrescente dalla zona a monte ed una drastica diminuzione immediatamente a valle della immissione delle acque della sorgente Molini di Sant'Anna, indicando effetti di diluizione associati a fenomeni indotti di precipitazione. In prossimità della foce si nota un aumento della CE attribuibile alla ingressione salina. Il valore di Eh è compreso tra 0.35 e 0.40 V, indicando gli effetti combinati di coppie di ossido-riduzione non in condizioni di equilibrio. Le concentrazioni di ossigeno disciolto variano da 4.1 a 8.9 mg/L; si nota come i valori più bassi siano misurati nelle due stazioni prossime alla foce.

I <u>pozzi</u> hanno una temperatura variabile tra 14.8 e 21.1 °C (media 16.5 °C \pm 1.8); non si notano differenze sistematiche di temperatura tra pozzi superficiali e profondi. Il pH varia nell'intervallo 7.3 – 7.9, indicando condizioni variabili per il ruolo di carbonati e CO₂ dominantemente in condizioni di sistema chiuso alla anidride carbonica. La CE varia tra 491 e 630 μ S/cm, indicando comunque acque mediamente mature e con tempi di residenza sufficientemente prolungati; il valore di Eh, nell'intervallo 0.22-0.33 V, indica condizioni relativamente riducenti; l'ossigeno disciolto varia nell'intervallo tra 5.6 e 8.5 mg/L, indicando in alcuni casi un efficace consumo di ossigeno a partire dalle caratteristiche meteoriche possibilmente per il ruolo di componenti organiche, questo argomento richiede ulteriore studio. In questo contesto di necessario approfondimento si pone anche l'assenza di correlazione e in alcuni casi l'apparente indicazione contrastante che deriva dai valori di Eh e ossigeno disciolto combinati.

Ioni maggiori

Il chimismo degli ioni maggiori permette una classificazione idrochimica delle varie facies presenti per quanto riguarda la fase acquosa, attraverso una rappresentazione nel diagramma di Piper (figura 8.1.1).

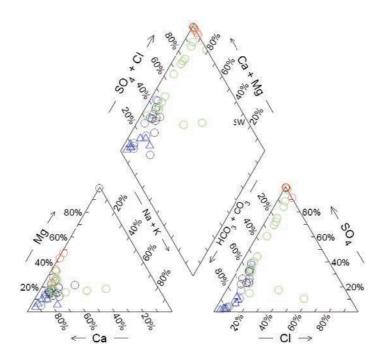


Fig. 8.1.1: diagramma classificativo di Piper. Simboli: triangolo blu: sorgenti non captate; cerchio blu: sorgenti captate; cerchio nero: pozzi; cerchio verde: acque superficiali; cerchio rosso: drenaggi. SW: acqua di mare media.

Dalla figura 8.1.1 si nota come le acque delle sorgenti, sia captate che non captate, siano dominantemente del tipo Ca-bicarbonatico. Si osservano tuttavia alcune deviazioni verso un arricchimento in ioni Mg, ed in particolare SO₄, per le sorgenti Carpigna (VSCRP) e Moresco Galleria, Moresco Alta, Moresco Sondaggio e Molini di Sant'Anna (VSMOG, VSMOA, VSMOS, VSMSA), rispettivamente. Queste acque appartengono alla facies Ca-Mg-HCO₃ la prima e Ca-SO₄-HCO₃ le ultime. Nel complesso queste caratteristiche idrochimiche indicano la circolazione in acquiferi carbonatici, prevalentemente la Formazione del Calcare cavernoso e brecce poligeniche e possibilmente la Formazione dei Grezzoni, a conferma dell'assetto idrostrutturale precedentemente delineato. L'arricchimento relativo in ione solfato potrebbe riflettere sia il ruolo di componenti gessifere presenti all'interno della Formazione del Calcare cavernoso che apporti da componenti solfatiche derivate dalle mineralizzazioni. Questo argomento richiede necessariamente ulteriori studi. E' da notare inoltre come alcune delle sorgenti abbiano concentrazioni significative di ione cloruro e sodio, con rapporto molare che generalmente si approssima a 1:1 suggerendo il possibile contributo dalla lisciviazione di sali da aerosol marino. Anche questo aspetto necessita di ulteriori approfondimenti. Una sorgente, inoltre (VSDAD) mostra concentrazioni relativamente elevate di ione nitrato (30 mg/L), di probabile origine antropica, collocandosi in posizione inferiore rispetto al paesino di Monteggiori.

Le acque dei drenaggi sono del tipo a ione solfato dominante, originato dalla alterazione dei solfuri (pirite), con concentrazioni relativamente elevate di ioni calcio e magnesio che mostra la maggiore variabilità in termini di concentrazione.

Le acque superficiali del Torrente Baccatoio descrivono prevalentemente un andamento dai termini ricchi in solfato al termine calcio-bicarbonatico, con una distribuzione lineare. L'andamento osservato può essere attribuito a processi di mescolamento binario con comportamento quasi-conservativo delle specie, indicando che, a questa scala di osservazione e per questi parametri, il processo dominante per le acque degli effluenti minerari immesse nel torrente è quello della diluizione con acque da acquiferi carbonatici. Questo suggerisce che il mescolamento sia avvenuto lungo il corso del Baccatoio stesso, poco prima del campionamento. Due campioni, in prossimità della foce, deviano verso termini di mescolamento con acqua di mare.

Le acque dei pozzi mostrano una variabilità composizionale da composizioni Ca-HCO₃ per i pozzi profondi verso composizioni analoghe a quanto osservato in alcune delle stazioni di campionamento del Torrente Baccatoio, con un arricchimento relativo in ione solfato, per i pozzi più superficiali. Questo potrebbe essere messo in relazione con processi di infiltrazione in sub-alveo delle acque del torrente stesso, argomento che sarà affrontato con maggiore dettaglio nel proseguo dello studio.

Le caratteristiche idrochimiche in termini di ioni maggiori delle acque sono riassunte nella fig. 8.1.2

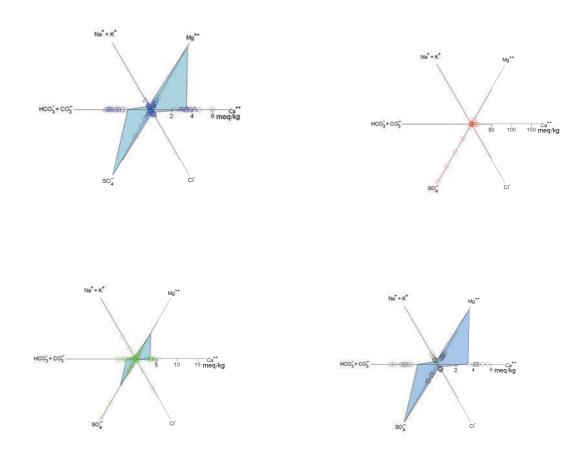


Fig. 8.1.2: rappresentazione del chimismo degli ioni maggiori. Simboli: blu: sorgenti; rosso: drenaggi; verde: acque superficiali (Torrente Baccatoio); nero: pozzi.

Si nota la variabilità composizionale delle sorgenti, in particolare per quanto riguarda gli ioni calcio, bicarbonato e solfato; la variabilità dei drenaggi limitatamente allo ione solfato e gli effetti di queste variazioni combinate e smorzate dai processi di mescolamento che omogeneizzano la composizione nelle acque del Torrente Baccatoio. Si nota inoltre come l'andamento generale del chimismo dei pozzi riproduca quello delle sorgenti e del torrente.

Elementi in traccia

L'insieme dei dati relativi agli elementi in traccia è riportato graficamente nella figura 8.1.3, relativamente ai valori di riferimento del D. Lgs. 152/2006 per quanto riguarda le acque sotterranee Drenaggi minerari Drenaggi mi

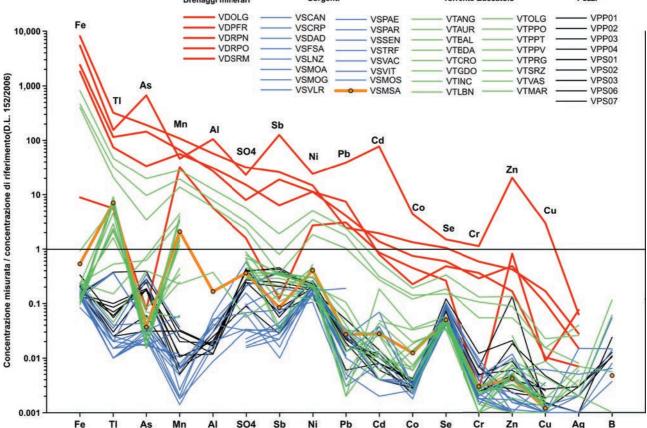


Fig. 8.1.3: concentrazione di una serie di elementi in traccia nelle acqua, normalizzata rispetto alle rispettive concentrazioni di soglia riportate nel D. Lgs. 152/2006 (acque sotterranee). Simbologia di colori come nelle precedenti figure.

Le sorgenti hanno concentrazioni variabili per i vari analiti, inferiori alle soglie imposte dalla normativa con l'eccezione della sorgente Molini di Sant'Anna che eccede per tallio e manganese, rappresentando quindi il drenaggio di un corpo idrico contaminato.

Il dettaglio del chimismo delle acque della sorgente Molini di Sant'Anna rispetto alle acque delle sorgenti Moresco e del Torrente Baccatoio a monte delle emergenze è illustrato nella figura 8.1.4

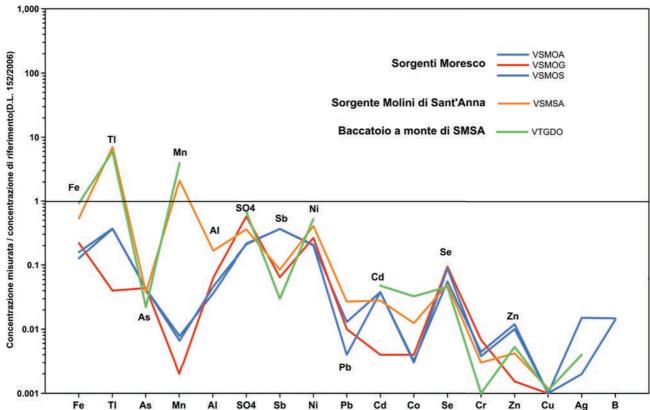


Fig. 8.1.4: dettaglio dell'andamento del chimismo degli elementi in traccia nelle sorgenti indicate e Torrente Baccatoio, stazione a monte della sorgente Molini di Sant'Anna.

Dalla figura si evidenzia ulteriormente il superamento delle soglie per Tl e Mn per la sorgente Molini di Sant'Anna, l'approssimarsi alle soglie per il Tl per le sorgenti Moresco Alta e Moresco Sondaggio e le analogie di distribuzione con il chimismo del Torrente Baccatoio. Questa ultima osservazione richiede ulteriori approfondimenti.

Gli effluenti minerari hanno generalmente concentrazioni anche estremamente elevate per una serie di contaminanti (metalli e metalloidi) (figura 8.1.3), incluse concentrazioni elevate di tallio. Si segnalano in particolare le elevatissime concentrazioni in Fe e solfato in tutti i drenaggi, le elevate concentrazioni di Cd, Zn, As, Al e Sb del drenaggio della galleria di Ribasso della Miniera del Pollone e l'elevato contenuto di Tl e Mn del drenaggio della galleria Sant'Erasmo, Miniera di M. Arsiccio

Le acque del Torrente Baccatoio evidenziano gli effetti di diluizione/abbattimento dei contaminanti lungo il corso a partire dalle concentrazioni ereditate dagli effluenti minerari, con l'eccezione del tallio, che si mantiene a livelli di concentrazione sopra il limite di $2~\mu g/L$ in una serie di stazioni. Si veda ad esempio il diverso comportamento rispetto alle concentrazioni di arsenico; questo suggerisce qualitativamente un comportamento quasi-conservativo per il tallio in fase acquosa, ponendo le premesse per la sua dispersione.

Le acque dei pozzi hanno concentrazioni invariabilmente al di sotto delle soglie per i diversi elementi e non mostrano evidenze di arricchimenti in tallio, rappresentando quindi acque di buona qualità per quanto riguarda le specie determinate. Nel dettaglio le acque del pozzo superficiale VPS06 (profondità ~ 12 m), ubicato nel settore meridionale dell'abitato di Valdicastello, sono contraddistinte da tenori di Tl, As e Zn (rispettivamente 0.75, 3.9, 403 µg/L) superiori a quelli degli altri pozzi campionati.

Date le elevate concentrazioni di tallio misurate nei drenaggi e l'importanza di questo elemento nel contesto dell'area di studio, la speciazione del tallio nei drenaggi come si ottiene su base termodinamica è illustrata graficamente nella figura 8.1.5 in termini dei valori di Eh-pH con i campi delle varie specie ottenuti sulla base del chimismo medio effettivo dei drenaggi stessi.

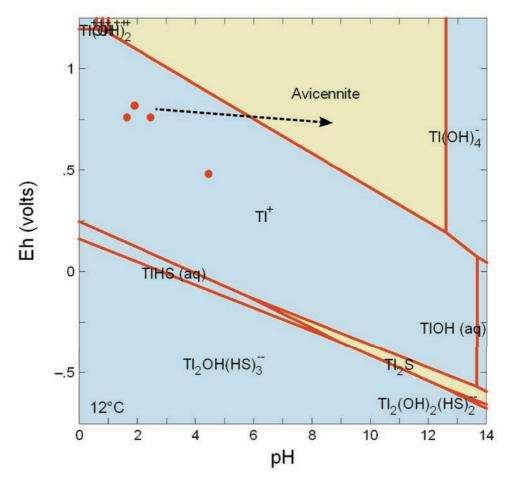
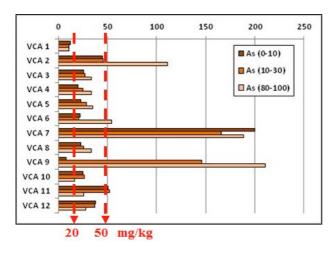


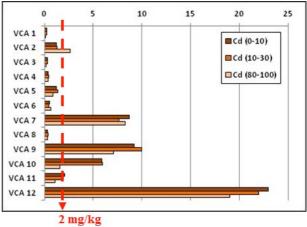
Fig. 8.1.5: diagramma Eh-pH per le specie del tallio. I cerchi rossi pieni indicano le caratteristiche dei drenaggi. La freccia nera a tratteggio indica un possibile percorso di aumento di pH a Eh quasi costante con stabilizzazione della fase insolubile avicennite (Tl_2O_3) .

Dalla figura si nota come nei drenaggi minerari la specie dominante di Tl sia la forma Tl⁺, solubile in fase acquosa. Il Tl in questa forma può disperdersi nell'ecosistema attraverso la fase acquosa stessa.

Si nota inoltre come all'aumentare del pH e mantenendo condizioni di ossidazione (ad esempio attraverso l'apporto di acque meteoriche ossigenate) sia possibile la formazione di avicennite (ossido di tallio trivalente, Tl₂O₃). Questo aspetto richiede certamente ulteriore approfondimento, in particolare in relazione alle acque contaminate da tallio della sorgente Molini di Sant'Anna.

8.2. Suoli e piante


In tabella 8.2.1 vengono segnalati per ogni sito ad uso verde pubblico, privato e residenziale gli elementi presenti negli orizzonti superficiali dei suoli che superano le soglie di concentrazione limite in riferimento al D. lgs. 152/2006. Per quanto riguarda lo stagno (Sn) è acclarato che la sua concentrazione media nella gran parte dei suoli italiani è superiore ai 2 mg/kg, di conseguenza è plausibile che in tutti i siti indagati la concentrazione di tale elemento sia superiore al limite di 1 mg/kg previsto dal D. Lgs. 152/2006.


Tab. 8.2.1 – Siti ad uso verde pubblico, privato e residenziale in cui si ha il superamento della concentrazione soglia di contaminazione da parte di microelementi e metalli pesanti presenti nei primi 30 cm di suolo (caselle gialle). Tra parentesi i valori soglia espressi in mg/kg relativi a 12 elementi analizzati previsti dal D.lgs. 152/2006. Le caselle arancioni indicano per il sito di riferimento il superamento della soglia di concentrazione di un determinato elemento previsto dalla normativa per zone ad uso commerciale e industriale.

Sito	As	Cd	Cr	Cu	Hg	Ni	Pb	Sb	Sn	Tl	V	Zn
Sito	(20)	(2)	(150)	(120)	(1)	(120)	(100)	(10)	(1)	(1)	(90)	(150)
VCA 1												
VCA 2												
VCA 3												
VCA 4												
VCA 5												
VCA 6												
VCA 7												
VCA 8												
VCA 9												
VCA 10												
VCA 11												
VCA 12												

I siti VCA 7, 9, 11 e 12 superano le soglie delle concentrazioni per zone ad uso del suolo commerciale e industriale per gli elementi As, Cd, Hg, Sb, Tl e Zn.

Le figure 8.2.1a e 8.2.1b mostrano la distribuzione delle concentrazioni di alcuni inquinanti nei campioni di suolo prelevati a diverse profondità nei dodici siti monitorati.

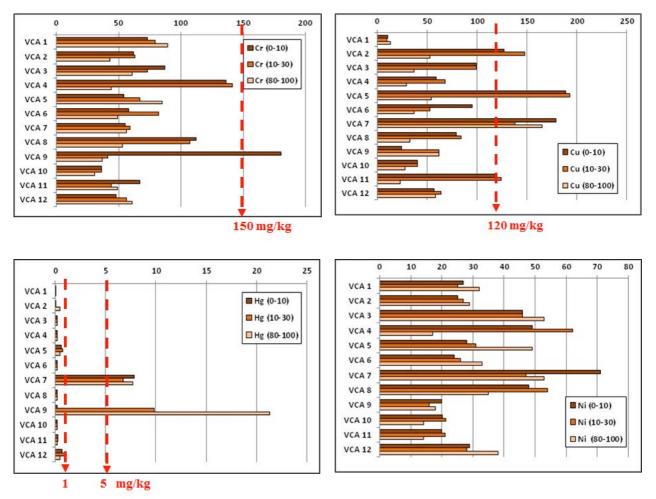
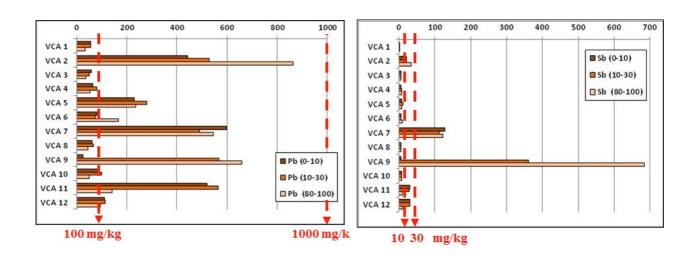



Fig. 8.2.1: Rappresentazione delle concentrazioni di As, Cd, Cr, Cu, Hg e Ni alle diverse profondità dei suoli monitorati (in rosso tratteggiato concentrazioni limite D. Lgs., 152/2006). Valori espressi in mg/kg.

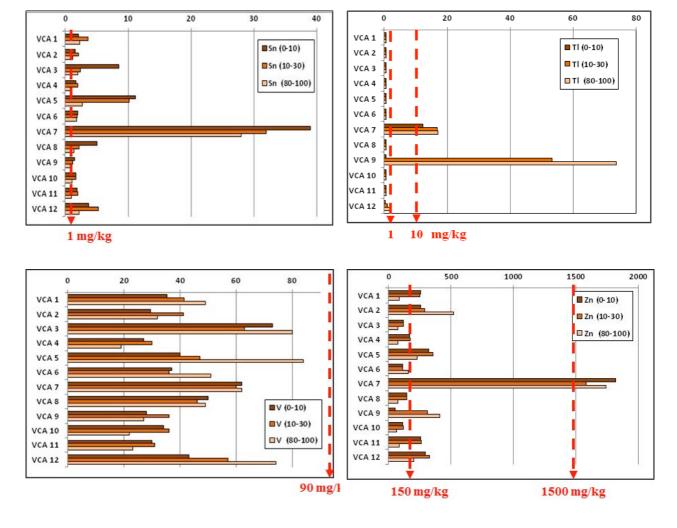


Fig. 8.2.1b: Rappresentazione delle concentrazioni di Pb, Sb, Sn, Tl, V e Zn alle diverse profondità dei suoli monitorati (in rosso tratteggiato concentrazioni limite D. Lgs., 152/2006). Valori espressi in mg/kg.

Sono stati calcolati alcuni indici che vengono usati per la valutazione del grado di inquinamento del suolo. In particolare si è calcolato il fattore di arricchimento superficiale (EF) degli elementi nel *top soil*.

EF = [M]top/[Al]top/[M]bg/[Al]bg

Dove: [M] è la concentrazione dell'inquinante in mg/kg normalizzata alla concentrazione dell'Al [Al], mentre top è lo strato del suolo 0-10 cm e bg è quello del background (campione alla profondità di 80-100 cm).

La scala che si è presa in considerazione è la seguente:

EF < 2: da mancanza a minimo arricchimento

 $2 \le EF < 5$: arricchimento moderato

 $5 \le EF < 20$: arricchimento significativo

 $20 \le EF < 40$: arricchimento molto alto

EF \geq 40: arricchimento estremamente elevato

Nella tabella 8.2.2 sono riportati i valori degli indici del fattore di arricchimento (EF) superficiale dei suoli coltivati.

Tab. 8.2.2 – Fattore di arricchimento EF dei suoli

	As	Ba	Cd	Co	Cr	Cu
VCA1	1.4	1.5		1.0	1.5	4.2
VCA2	0.4	0.5	0.5	0.9	1.5	2.5
VCA3	0.8	2.7	2.0	0.8	1.5	2.8
VCA4	0.4	2.3	0.7	0.7	2.2	1.5
VCA5	1.3	10.1	2.9	1.1	3.9	6.9
VCA6	0.5	0.3	1.0	0.9	1.5	3.3
VCA8	0.6	2.9	1.2	0.8	2.0	2.3
VCA9	0.0	0.5	0.3	0.4	1.0	0.1
VCA10	1.0	0.4	2.5	0.9	0.8	0.9
VCA11	1.7	3.7	1.6	1.0	1.1	4.2
VCA12	1.8	2.0	1.6	1.4	1.0	1.3
	Ni	Pb	Sb	Sn	V	Zn
	111	10	30	511	•	2.11
VCA1	1.1	2.2	1.7	1.2	0.9	3.8
VCA1 VCA2						
	1.1	2.2	1.7	1.2	0.9	3.8
VCA2	1.1 0.9	2.2 0.5	1.7 0.6	1.2 1.4	0.9	3.8 0.5
VCA2 VCA3	1.1 0.9 0.9	2.2 0.5 1.7	1.7 0.6 1.1	1.2 1.4 4.3	0.9 1.0 1.0	3.8 0.5 1.7
VCA2 VCA3 VCA4	1.1 0.9 0.9 2.1	2.2 0.5 1.7 0.9	1.7 0.6 1.1 0.7	1.2 1.4 4.3 1.5	0.9 1.0 1.0 1.0	3.8 0.5 1.7 1.7
VCA2 VCA3 VCA4 VCA5	1.1 0.9 0.9 2.1 1.1	2.2 0.5 1.7 0.9 1.9	1.7 0.6 1.1 0.7 2.1	1.2 1.4 4.3 1.5 8.0	0.9 1.0 1.0 1.0 0.9	3.8 0.5 1.7 1.7 2.8
VCA2 VCA3 VCA4 VCA5 VCA6	1.1 0.9 0.9 2.1 1.1 0.9	2.2 0.5 1.7 0.9 1.9 0.6	1.7 0.6 1.1 0.7 2.1 0.6	1.2 1.4 4.3 1.5 8.0 1.4	0.9 1.0 1.0 1.0 0.9	3.8 0.5 1.7 1.7 2.8 0.9
VCA2 VCA3 VCA4 VCA5 VCA6 VCA8	1.1 0.9 0.9 2.1 1.1 0.9 1.3	2.2 0.5 1.7 0.9 1.9 0.6 1.3	1.7 0.6 1.1 0.7 2.1 0.6 0.9	1.2 1.4 4.3 1.5 8.0 1.4 3.4	0.9 1.0 1.0 1.0 0.9 0.9	3.8 0.5 1.7 1.7 2.8 0.9
VCA2 VCA3 VCA4 VCA5 VCA6 VCA8	1.1 0.9 0.9 2.1 1.1 0.9 1.3 0.2	2.2 0.5 1.7 0.9 1.9 0.6 1.3 0.0	1.7 0.6 1.1 0.7 2.1 0.6 0.9	1.2 1.4 4.3 1.5 8.0 1.4 3.4 0.4	0.9 1.0 1.0 1.0 0.9 0.9 1.0	3.8 0.5 1.7 1.7 2.8 0.9 1.9
VCA2 VCA3 VCA4 VCA5 VCA6 VCA8 VCA9	1.1 0.9 0.9 2.1 1.1 0.9 1.3 0.2	2.2 0.5 1.7 0.9 1.9 0.6 1.3 0.0	1.7 0.6 1.1 0.7 2.1 0.6 0.9 0.0	1.2 1.4 4.3 1.5 8.0 1.4 3.4 0.4	0.9 1.0 1.0 1.0 0.9 0.9 1.0 0.2	3.8 0.5 1.7 1.7 2.8 0.9 1.9 0.0

Non è stato riscontrato arricchimento di Tl nei suoli agricoli studiati. Come si può evidenziare dalla tabella il sito VCA 5 è quello che presenta un arricchimento significativo di alcuni elementi tra cui spicca il Ba, Cu e Sn. Un nuovo campionamento dovrà essere eseguito per verificare il dato derivato che ci sia la presenza di sedimenti maggiormente arricchiti in superficie rispetto ai sedimenti alla profondità di 80-100 cm.

Gli indici di arrichimento calcolati sono riportati graficamente nella figura 8.2.2

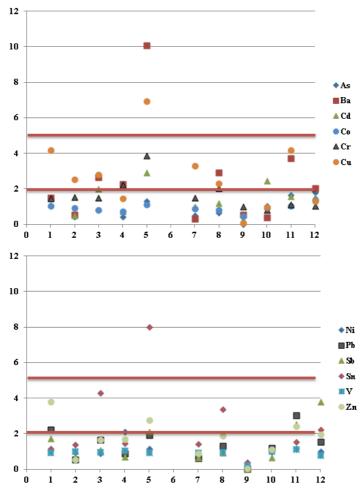
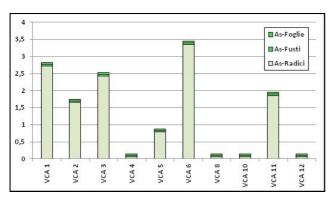
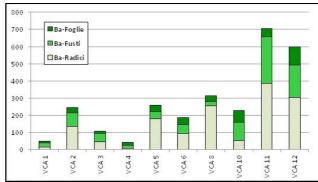




Fig. 8.2.2: Rappresentazione degli indici di arricchimento superficiale(EF) in cui EF < 2 = mancanza o minimo arricchimento, $2 \le EF < 5 =$ moderato arricchimento, $5 \le EF < 20 =$ arricchimento significativo.

In figura 8.2.3 vengono rappresentate le concentrazioni di alcuni inquinanti riscontrate nei diversi apparati (radice, fusto, foglia) di cavolo nero.

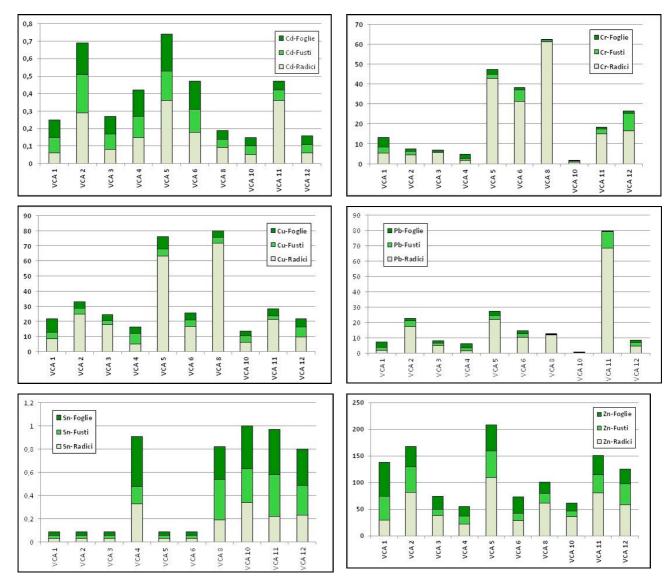
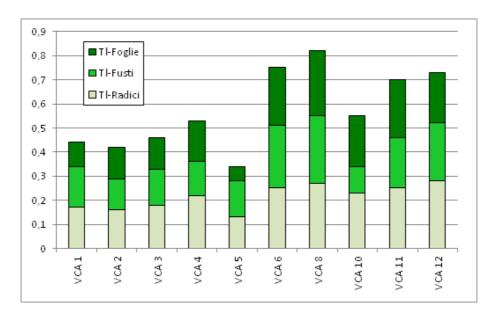
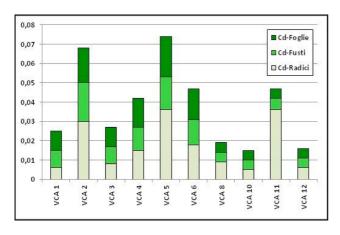
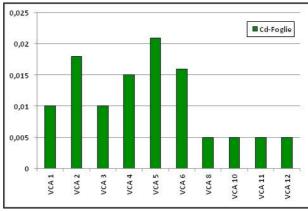
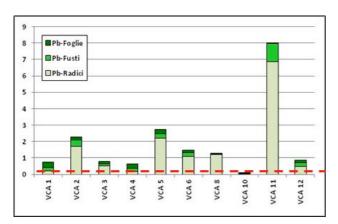


Fig. 8.2.3: Rappresentazione delle concentrazioni di EPT (As, Ba, Cd, Cr, Cu, Pb, Sn e Zn) nei diversi apparati (radice, fusto, foglia) di cavolo nero prelevati in dieci siti ad uso verde pubblico, privato e residenziale del territorio in esame. Valori espressi in mg/kg di sostanza secca.

Le rappresentazioni di figura 8.2.3 evidenziano come As, Ba, Cr, Cu e Pb tendano ad accumularsi di preferenza negli apparati radicali con limitato trasferimento negli altri organi (fusti e foglie); al contrario di Cd, Sn, Zn che presentano un significativo trasferimento negli apparati fogliari. Quantitativamente Cd e Sn presentano concentrazioni molto basse. Comportamento simile a Cd e Sn si ha per il Tl, la cui concentrazione negli apparati fogliari supera raramente 0.27 mg/kg (figura 8.2.4), a significare una concentrazione dell'elemento nella sostanza fresca inferiore a 0.05 mg/kg.


Fig. 8.2.4: Rappresentazione delle concentrazioni di Tl nei diversi apparati (radice, fusto, foglia) di cavolo nero prelevati in dieci siti ad uso verde pubblico, privato e residenziale del territorio in esame. Valori espressi in mg/kg di sostanza secca.

La valutazione circa il rischio di tossicità dovuto all'ingestione di prodotti vegetali che hanno adsorbito aliquote significative di EPT trova scarso riscontro nella legislazione comunitaria e del nostro Paese. Come già accennato nel capitolo 7 solamente il Regolamento CEE n. 1881/2006 del 19/12/2006 fornisce indicazioni circa i tenori massimi di Cd, Pb e Sn presenti in prodotti orticoli. Nel caso specifico delle Brassicacee, tali valori massimi riferiti al peso fresco sono rappresentati da 0.20 mg/kg per il cadmio, 0.30 mg/kg per il piombo e 50 mg/kg per lo stagno.

In figura 8.2.5 vengono rappresentate le concentrazioni di Cd e Pb che risultano nei diversi apparati del cavolo nero riferite alla sostanza fresca e specificatamente negli apparati fogliari. Nel caso del Cd, i valori risultano decisamente inferiori al tenore massimo di 0.20 mg/kg di sostanza fresca previsto dal Reg. CEE n. 1881/2006. Per quanto concerne il Pb si riscontra che negli apparati fogliari del sito VCA 1 i tenori dell'elemento superino i 30 mg/kg di sostanza fresca e che a tale limite si avvicinano le condizioni dei siti 4 e 5.

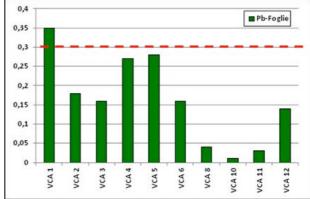


Fig. 8.2.5: Concentrazione di Cd e Pb nei diversi apparati (radice, fusto, foglia) di cavolo nero (mg/kg di sostanza fresca) - Regolamento CE n. 1881/2006 del 19/12/2006.

Sono stati inoltri calcolati alcuni indici di traslocazione (TI) e bioaccumulo (BAF) per valutare l'interazione delle piante orticolo con il suolo. L'indice di traslocazione (TI) è stato calcolato secondo la seguente equazione:

TI = [M]f/[M]r

dove [M]f è la concentrazione dell'elemento (mg/kg) nelle foglie mentre [M]r è quella delle radici. In tabella 8.2.3 viene riportato l'indice di traslocazione calcolato nei diversi siti e diverse specie orticole coltivate e campionate. La traslocazione avviene quando l'indice TI è > 1, mentre invece la pianta accumula nelle radici quando l'indice TI è < 1.

E' possibile valutare come ci sia una forte traslocazione di Ba in alcun specie e in alcuni siti. Il Tl è traslocato dalle radici alle foglie in quasi tutti i casi. Il prato del giardino che è al di sopra del sito bonificato (VCA9) ha una forte traslocazione, poiché le graminacee hanno una notevole traslocazione dei metalli nella parte aerea e principalmente nella granella.

Tab. 8.2.3: Indice di traslocazione dalle radici alle foglie (TI). CN= cavolo nero, CNc= cavolo nero cartoccio, FI=finocchio, RA=rapa, CIP=cipolla, PORR= porro, prato = graminacee

		As	Ba	Cd	Cr	Cu	Ni	Pb	Sn	Tl	Zn
VCA1	CNc	0.1	0.2	1.1	0.0	0.2	0.0	0.1	1.5	8.0	0.8
	CN	3.2	8.0	1.0	8.0	0.9	2.8	1.5	0.9	1.2	1.7
	FI	1.4	1.4	0.6	1.2	0.4	1.2	8.0	1.6	1.4	0.9
VCA2	CN	0.2	0.2	0.6	0.3	0.2	0.0	0.1	0.5	8.0	0.5
	RA	0.2	0.6	1.0	0.2	0.3	0.1	0.2	1.3	1.2	0.7
	CIP	0.0	25.3	0.9	0.1	0.2	0.0	0.1	1.1	0.9	0.2
VCA3	CN	0.1	0.3	1.2	0.1	0.2	0.0	0.3	1.2	1.4	0.6
	RA	0.0	0.7	1.5	0.1	0.1	0.0	0.1	8.0	0.9	0.4
	FI	0.1	0.5	0.9	0.1	0.4	0.1	0.2	1.6	1.2	1.6
VCA5	CN	0.1	0.2	0.6	0.1	0.1	0.1	0.1	1.0	0.4	0.5
	RA	0.0	0.4	8.0	0.4	0.2	0.0	0.1	0.6	1.3	0.4
	PORR	0.7	8.0	0.9	8.0	0.8	0.8	0.7	1.1	1.2	1.0
	FI	0.9	1.0	0.7	1.3	0.6	8.0	0.5	0.7	1.9	1.5
VCA6	RA	0.1	8.0	8.0	0.1	0.3	0.1	0.3	0.6	1.1	0.5
	CN	0.0	0.6	0.3	0.2	0.2	0.1	0.0	1.8	0.4	0.3
VCA8	CN	0.0	0.1	3.3	0.0	0.1	0.0	0.0	1.5	1.0	0.3
VCA9	prato	0.5	1.3	0.1	2.3	8.4	8.0	8.0	28.7	0.4	0.6
VCA10	CN	0.8	13.6	0.9	0.4	0.5	1.0	1.6	1.1	0.0	0.4
VCA11	RA	0.0	0.2	0.0	0.3	0.2	0.0	0.0	1.2	1.1	0.3
VCA12	CN	0.0	0.0	0.0	0.0	0.2	0.9	0.0	1.8	1.0	0.5
	RA	0.0	0.4	0.5	0.1	0.6	0.0	0.3	1.3	1.5	0.5

Inoltre, è stato calcolato l'indice di bioaccumulo (Tab. 8.2.4) dell'elemento (BAF)_{totale}, calcolato come rapporto tra la concentrazione dell'elemento in tutti gli organi dei vegetali orticoli e quella del suolo; è stato calcolato anche l'indice di bioaccumulo relativo alle radici (BAF)_{radice}.

 $BAF_{totale} = [M]p/[M]s$

 $BAF_{radice} = [M]r/[M]s$

dove [M]p è la concentrazione dell'elemento totale negli organi delle piante (foglie+fusto+radici) mentre [M]r è quello delle radici; [M]s è la concentrazione dell'elemento nel suolo.

Alcuni elementi vengono accumulati nelle piante, anche se in alcuni casi le concentrazioni assolute degli elementi sono molte basse (esempio Cd). Anche in questo caso è da sottolineare il comportamento delle graminacee, che hanno alti fattori di bioaccumulo dal suolo agli organi delle piante.

L'importanza della traslazione degli elementi nelle parti aeree è data dal confronto tra l'indice di bioaccumulo calcolato nel totale degli ortaggi rispetto al quello calcolato solo dalle radici.

Tab. 8.2.4 – Indice di bioaccumulo (BAF)totale dal suolo agli organi delle piante e dalle suolo alle radici. CN= cavolo nero, CNc= cavolo nero cartoccio, FI=finocchio, RA=rapa, CIP=cipolla, PORR= porro, prato = graminacee

– gramin			_			_		-			_
	BAF _{totale}	As	Ва	Cd	Cr	Cu	Ni	Pb	Sn	Tl	Zn
VCA1	CNc	0.4	0.4	2.0	0.7	0.5	0.3	0.5	0.4	nd	0.7
	CN	0.1	0.2	1.3	0.3	0.3	0.1	0.2	0.3	nd	0.6
	FI	0.2	0.4	2.4	0.3	1.2	0.2	0.2	0.5	nd	1.2
VCA2	CN	0.1	0.2	0.6	0.1	0.2	0.0	0.1	0.4	nd	0.7
	RA	0.2	0.3	1.4	0.6	0.4	0.2	0.2	0.4	nd	0.9
	RAC	0.1	2.1	0.9	0.2	0.2	0.1	0.1	0.3	nd	0.7
VCA3	CIP	0.1	0.1	1.3	0.2	0.4	0.1	0.0	0.4	nd	1.2
	CN	0.1	0.4	1.0	0.1	0.3	0.1	0.2	0.3	nd	8.0
	RA	0.2	0.7	1.7	0.3	0.3	0.2	0.3	0.3	nd	1.2
	FI	0.2	0.3	0.8	0.2	0.3	0.2	0.2	0.3	nd	8.0
VCA5	CN	0.1	0.2	0.6	0.6	0.4	0.2	0.1	0.1	nd	0.7
	RA	0.1	0.2	0.5	0.2	0.1	0.1	0.1	0.1	nd	0.4
	POR	0.3	0.3	8.0	1.8	0.4	0.4	0.3	0.1	nd	0.5
	FI	0.1	0.2	0.3	0.3	0.3	0.1	0.1	0.1	nd	0.5
VCA6	RA	0.2	0.6	1.8	0.4	0.5	0.1	0.2	0.5	nd	1.3
	CN	0.3	0.6	1.2	0.7	0.5	0.3	0.3	0.6	nd	1.3
VCA8	CN	0.0	0.1	0.0	1.1	0.6	0.1	0.0	0.0	0.0	0.4
VCA9	prato	1.0	4.4	0.0	2.1	11.7	0.9	1.4	18.4	0.4	2.7
VCA10	CN	0.0	0.3	0.0	0.0	0.3	0.0	0.0	0.6	nd	0.5
VCA11	RA	0.4	0.7	0.0	1.2	8.0	0.4	0.4	0.5	nd	8.0
VCA12	CN	0.0	0.7	0.2	0.4	0.2	0.1	0.1	0.5	nd	0.6
	BAF _{radici}	As	Ва	Cd	Cr	Cu	Ni	Pb	Sn	Tl	Zn
VCA1	CNc	0.3	0.2	0.6	0.6	0.4	0.3	0.4	0.1	nd	0.3
	CN	0.0	0.0	0.3	0.1	0.1	0.0	0.0	0.1	nd	0.1
	FI	0.0	0.0	1.2	0.1	0.8	0.1	0.1	0.1	nd	0.5
VCA2	CN	0.0	0.1	0.2	0.1	0.2	0.0	0.0	0.1	nd	0.3
	RA	0.1	0.2	0.5	0.5	0.2	0.1	0.1	0.1	nd	0.3
	CIP	0.0	0.1	0.5	0.1	0.2	0.1	0.0	0.1	nd	0.6
VCA3	CN	0.1	0.2	0.3	0.1	0.2	0.1	0.1	0.1	nd	0.4
	RA	0.2	0.3	0.4	0.3	0.2	0.2	0.3	0.1	nd	0.6
	FI	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.1	nd	0.3
	CN	0.1	0.2	0.3	0.6	0.3	0.1	0.1	0.0	nd	0.4

VCA5	RA	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	nd	0.2
	PORR	0.3	0.2	0.6	1.7	0.3	0.3	0.2	0.1	nd	0.4
	FI	0.0	0.1	0.1	0.1	0.1	0.0	0.1	0.0	nd	0.1
	RA	0.1	0.3	0.7	0.3	0.3	0.1	0.1	0.2	nd	0.6
VCA6	CN	0.2	0.3	0.5	0.5	0.4	0.2	0.2	0.2	nd	8.0
VCA8	CN	0.1	0.2	0.0	8.0	0.4	0.2	0.2	0.1	nd	0.5
VCA9	GRAMI	0.7	1.9	0.0	0.6	1.2	0.5	8.0	0.6	0.3	1.7
VCA10	CN	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.2	nd	0.3
VCA11	RA	0.4	0.5	0.0	0.8	0.5	0.4	0.4	0.1	nd	0.4
VCA12	RA	0.0	0.6	0.2	0.3	0.2	0.1	0.1	0.1	nd	0.3
	CN	0.0	0.1	0.0	0.3	0.2	0.0	0.0	0.0	0.1	0.2

I rilievi effettuati sui siti discarica prodotti dalle attività di estrazione e di lavorazione dislocate in diverse aree del bacino del torrente Baccatoio (Fig. 8.2.6) hanno evidenziato la formazione di suoli poco evoluti (Entisols, SSS 2012) ed interessati da vegetazione erbacea e/o arbustiva nelle situazioni morfologiche pianeggianti o di pendio poco accentuato.

Fig. 8.2.6: Immagini dei suoli campionati nelle discariche della Miniera di Monte Arsiccio.

Nelle figure 8.2.7a e 8.2.7b sono rappresentate le concentrazioni di alcuni elementi tossici e potenzialmente tossici (As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Sn, Tl, V, Zn) negli orizzonti dei primi 30 cm dei profili dei suoli indagati. Si osserva che in tutti i siti indagati si ha il superamento della soglia di concentrazione previsto dalla normativa per zone ad uso commerciale e industriale per As

(> 50 mg/kg), Hg (> 5 mg/kg), Sb (>30 mg/kg) e Tl (10 mg/kg). Nei siti MIN1 e MIN2 si ha anche il superamento delle concentrazioni di Pb (> 1000 mg/kg) e di Zn (> 1500 mg/kg).

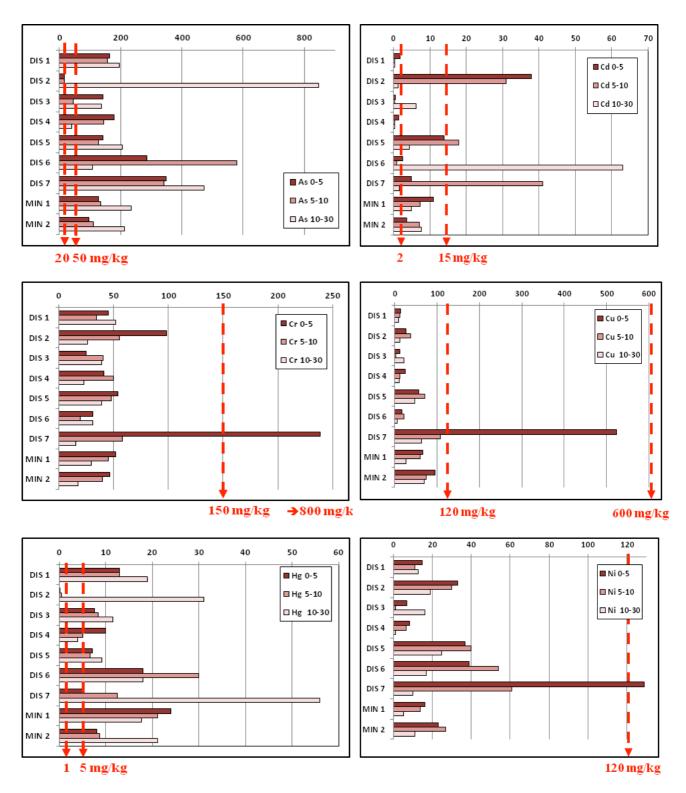


Fig. 8.2.7a: Rappresentazione delle concentrazioni di As, Cd, Cr, Cu, Hg e Ni alle diverse profondità dei profili di suoli formatisi su substrati di origine mineraria (in rosso tratteggiato concentrazioni limite D. Lgs., 152/2006). Valori espressi in mg/kg.

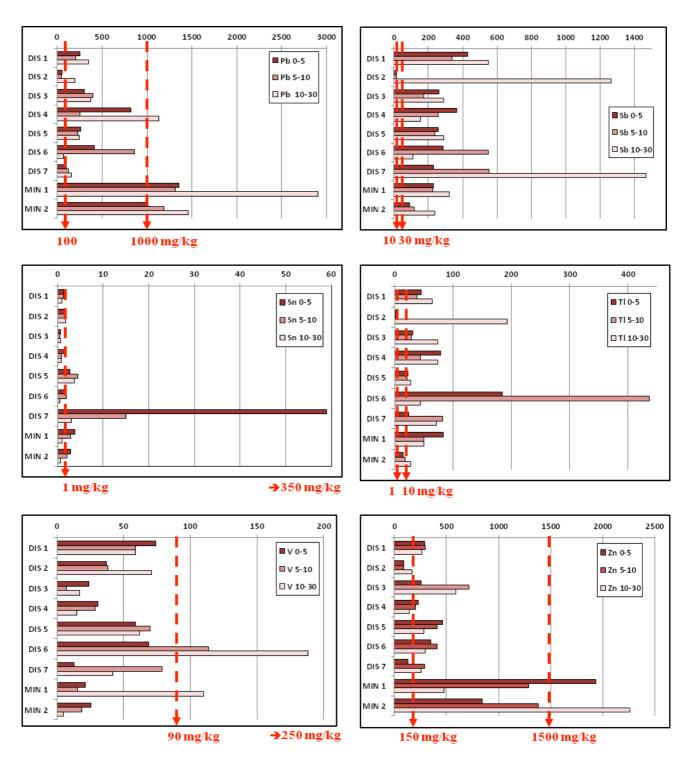


Figura 8.2.7b: Rappresentazione delle concentrazioni di Pb, Sb, Sn, Tl, V e Zn alle diverse profondità dei profili di suoli formatisi su substrati di origine mineraria (in rosso tratteggiato concentrazioni limite D. Lgs., 152/2006). Valori espressi in mg/kg.

Lo spessore di suolo riscontrato è già in grado di ospitare una rizosfera attiva con lo sviluppo in superficie di vegetazione erbacea ed arbustiva. In figura 8.2.8 sono rappresentate le concentrazioni di As, Hg, Pb, Sb, Tl e Zn riscontrate nelle radici e nelle foglie della vegetazione erbacea presente nei siti interessati da discariche minerarie e prelevata in corrispondenza dei profili di suoli.

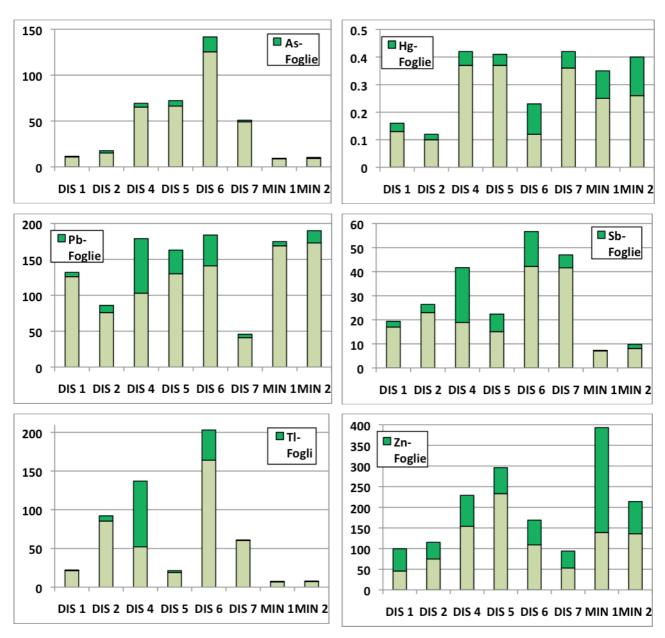


Fig. 8.2.8: Rappresentazione delle concentrazioni di EPT (As, Hg, Pb, Sb, Tll e Zn) riscontrate negli apparati (radici e foglie) di vegetazione erbacea prelevata nei siti interessati da discariche minerarie in corrispondenza dei profili di suoli. Valori espressi in mg/kg di sostanza secca.

In figura 8.2.9 è riportata la rappresentazione cumulativa delle concentrazioni misurate nei diversi apparati della vegetazione erbacea (radici e foglie) nell'ambito dei siti indagati; Cd, Hg e Sn non vengono riportati in quanto le rispettive concentrazioni non ne permettono la visualizzazione.

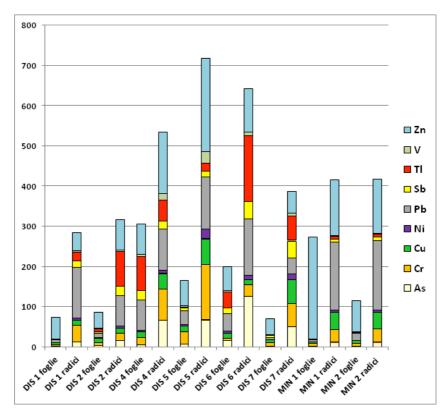


Fig. 8.2.9: Rappresentazione delle cumulative delle concentrazioni di EPT (As, Cr, Cu, Ni, Pb, Sb, Tl, V e Zn) riscontrate negli apparati (radici e foglie) della vegetazione erbacea prelevata nei siti interessati da discariche minerarie. Valori espressi in mg/kg.

8.3. Comunità microbiche

Lo studio delle comunità microbiche all'interno dei siti minerari oggetto di studio può apportare un contributo per la pianificazione degli interventi di mitigazione dei rischi ambientali. Infatti, è stato documentato come in alcuni casi certi microorganismi possono favorire le reazione di ossidazione dei solfuri e, quindi, il rilascio di metalli potenzialmente tossici nell'ambiente.

In questa prima fase del progetto i risultati ottenuti sono stati limitati all'identificazione e caratterizzazione della sola componente procariotica (batteri). Per ciò che concerne la componente eucariotica (protisti), diversi campioni relativi a tutti e quattro i siti di studio contengono organismi unicellulari di natura protistica la cui caratterizzazione è tuttora in corso.

Sulla base dei risultati finora ottenuti, è possibile stabilire la presenza di diverse specie batteriche nei siti di studio presi in esame. In particolare, nelle gallerie Ribasso del Pianello 2 e Sant'Olga sono state riscontrate una specie di *Acidithiobacillus ferrivorans*, diversi ceppi (cloni geneticamente identici) della specie *A. ferrooxidans*, una specie di *Leptospirillum* ed una specie di *Sulfobacillus*. Nessuna specie batterica è stata riscontrata nella galleria Sant'Anna. Ciò è probabilmente dovuto alle limitate tipologie di campionamento effettuate in questo sito di studio (solo campioni di acqua proveniente da stillicidi). Per confermare l'assenza di specie batteriche di interesse in tale sito, sono necessari ulteriori campionamenti, già previsti nella seconda parte del progetto. Nella galleria Rosina della Miniera del Pollone sono state identificate una specie di *A. ferrooxidans* ed una specie di *Leptospirillum*, entrambe geneticamente diverse da quelle riscontrate nelle gallerie Ribasso del Pianello 2 e Sant'Olga della Miniera di M. Arsiccio.

Acidithiobacillus: il genere comprende attualmente quattro specie riconosciute — A. thiooxidans, A. caldus, A. ferrivorans — ed una specie (A. albertensis) il cui status è ancora incerto. Sono specie estremamente acidofile appartenenti alla classe Gammaproteobacteria e hanno in comune la capacità di crescere in maniera autotrofa usando zolfo elementare e varie forme ridotte

di zolfo come unica fonte di energia. *Acidithiobacillus ferrooxidans* è l'unica tra le specie del genere ad essere anche in grado di utilizzare il ferro ferroso come donatore di elettroni. *Acidithiobacillus ferrooxidans* è di gran lunga la specie più ampiamente studiata tra tutti i batteri acidofili come conseguenza della sua riconosciuta importanza nel settore dell'inquinamento ambientale attraverso il suo ruolo attivo nella formazione di drenaggi acidi. Le due specie, *A. ferrivorans*, hanno molte caratteristiche fisiologiche in comune, esse tuttavia mostrano alcune differenze in termini di pH e temperatura ottimali di crescita, suggerendo che i due batteri tenderebbero a dominare diverse nicchie ambientali. Inoltre, dati preliminari hanno indicato un possibile meccanismo biochimico diverso per l'ossidazione del ferro ferroso in questi due batteri acidofili.

Leptospirillum: è un genere di batteri ferro-ossidanti che svolgono un ruolo molto importante nella bio-lisciviazione (la conversione di metalli in forma solubile) e bio-ossidazione (l'estrazione di metalli) industriali. Sono aerobi obbligati (richiedono ossigeno gassoso). Attualmente, sono due le specie di Leptospirillum riconosciute: L. ferrooxidans e L. ferriphilum. Sono specie Gram-negative con cellule spiraliformi di 0.3 – 0.5 μm di larghezza e 0.9 – 3.0 μm di lunghezza. Dal punto di vista metabolico, sono specie strettamente chemiolitoautotrofe, fissano il carbonio utilizzando ferro ferroso come donatore di elettroni e ossigeno come accettore di elettroni. Le specie di Leptospirillum possono contribuire ad alcune forme di inquinamento ambientale, soprattutto nei drenaggi acidi di miniera. I batteri del genere Leptospirillum si trovano in aree profonde delle miniere, avvolti in un biofilm di colore rosa che si trova sulla superficie dell'acqua che scorre nelle miniere.

Sulfobacillus: il genere comprende specie Gram-positive, acidofile e ferro-ossidanti. Esse sono specie moderatamente termofile che ossidano il ferro ferroso o riducono il ferro ferrico, a seconda delle concentrazioni di ossigeno disciolto. Alcune specie di Sulfobacillus sono state ritrovate in comunità batteriche associate ai drenaggi acidi di miniera. Le specie attualmente riconosciute sono tre: S. thermosulfidooxidans, S. acidophilus e S. sibiricus.

9. Note conclusive

Gli obiettivi della attività nel breve periodo erano:

- la caratterizzazione geologico-strutturale di base;
- l'inventario dei dati esistenti sulle diverse matrici ambientali, georeferenziati;
- l'acquisizione di nuovi dati di concentrazione, preliminari ma già utili ai fini della caratterizzazione, di elementi tossici in acque, suoli e biota;
- la caratterizzazione idrogeochimica preliminare delle acque per uso idropotabile;
- la caratterizzazione delle popolazioni batteriche all'interno delle gallerie minerarie.

A questo scopo sono stati acquisiti i dati esistenti, sia geologici che mineralogici che geochimici. Aggiunti ai risultati dei campionamenti effettuati, come riportato nella presente relazione, viene evidenziato quanto segue:

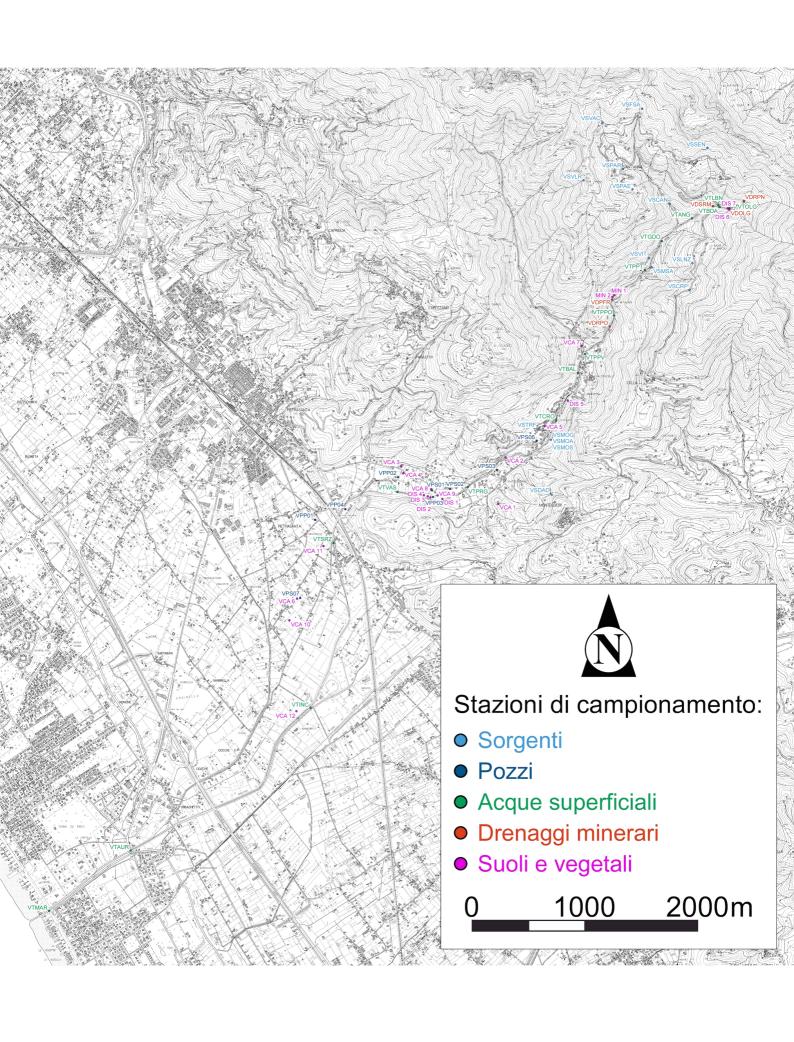
- è stata evidenziata la presenza di una estesa sorgente di contaminazione da metalli e metalloidi tossici o potenzialmente tossici, in particolare tallio, nelle rocce mineralizzate dell'area di studio;
- per il particolare assetto idrogeologico-strutturale, per i litotipi esistenti, per presenza, distribuzione e tipologia delle mineralizzazioni e per le peculiari condizioni climatiche, nell'area di studio si hanno le condizioni più favorevoli per attivare processi di rilascio di contaminanti inorganici alla fase acquosa;
- l'attività mineraria pregressa ha favorito l'interazione tra acqua, ossigeno atmosferico e rocce mineralizzate, incrementando la possibilità di rilascio dei contaminanti da parte dei corpi mineralizzati alla fase acquosa circolante, con elevate concentrazioni di elementi tossici e

potenzialmente tossici negli effluenti dalle gallerie minerarie dismesse alle acque superficiali;

- una serie di processi di diluizione e abbattimento per reazioni di precipitazione limitano la dispersione di alcuni dei metalli all'ecosistema attraverso le acque superficiali;
- il tallio risente solo in parte dei processi di abbattimento per precipitazione/adsorbimento e mostra comportamento quasi conservativo. La contaminazione per quanto riguarda questo elemento è mitigata prevalentemente dalla diluizione con acque non contaminate;
- molte delle sorgenti non mostrano evidenze di interazioni significative con i corpi mineralizzati, e rappresentano acque di buona qualità. Altre risentono a scala variabile della contaminazione, possibilmente anche attraverso apporti delle acque del Torrente Baccatoio;
- i pozzi campionati non mostrano evidenze significative di contaminazione, sia per i corpi idrici più superficiali che profondi;
- alcune specie di batteri ossidatori del ferro sono presenti nelle gallerie minerarie in estese colonie, incrementando i processi di rilascio. Le specie presenti sono state identificate;
- i suoli (anche ad uso orticolo) mostrano evidenze di contaminazione da parte di una serie di metalli e metalloidi; tuttavia il tallio sembra rimanere confinato nella matrice solida;
- la traslocazione dei contaminanti al biota appare dominantemente limitata all'apparato radicale, con l'eccezione di cadmio e zinco che hanno la tendenza a distribuirsi nelle porzioni aeree della pianta;
- la contaminazione da tallio nel biota pare limitata o assente.

L'insieme di queste informazioni rappresenta la base essenziale per l'attività nel medio periodo, che ha come obiettivo la quantificazione dei processi e delle dinamiche attive nel sistema nella prospettiva della attività di fine progetto, che ha come scopo la pianificazione della bonifica.

Le attività di medio periodo includono inoltre la seconda campagna di misure, prevista in settembre/ottobre 2015 e relativa al periodo di magra delle falde e quindi delle portate di drenaggi, sorgenti e torrente. In questa campagna, è previsto anche il campionamento dei sedimenti dell'alveo del Torrente Baccatoio, di concerto con ARPAT.


Appendice A Stazioni di campionamento

Sigle delle stazioni di campionamento con riportate le coordinate geografiche (sistema UTM WGS84), la quota (metri sul livello del mare, s.l.m.) e la tipologia di campione

Sigla campione	Northing (UTM)	Easting (UTM)	Quota (m s.l.m.)	Tipologia
VSSEN	4870027	602898	753	Sorgente non captata – Case Sennari
VSFSA	4870376	602316	771	Sorgente non captata – Foce di Sant'Anna
VSVAC	4870251	601961	742	Sorgente non captata – Vaccareccia
VSVIT	4869044	602378	290	Sorgente non captata – La Vite
VSVLR	4869741	601797	720	Sorgente non captata – Valle Ripe
VSDAD	4866946	601511	160	Sorgente non captata – Dal Deo
VSTRF	4867531	601391	96	Sorgente non captata – Tre Fontane
VSMSA	4868965	602402	312	Sorgente captata – Mulini di Sant'Anna
VSPAR	4869836	602142	650	Sorgente captata – Sant'Anna Parcheggio
VSPAE	4869656	602232	625	Sorgente captata – Sant'Anna Paese
VSCAN	4869526	602561	452	Sorgente captata – Sant'Anna Canale
VSLNZ	4869005	602760	515	Sorgente captata – Lenzo
VSMOG	4867440	601499	125	Sorgente captata – Moresco Galleria
VSMOA	4867440	601499	125	Sorgente captata – Moresco Alta
VSMOS	4867440	601499	125	Sorgente captata – Moresco Sondaggio
VSCRP	4868771	602739	527	Sorgente captata – Carpigna
VPP02	4867096	600152	28	Pozzo profondo
VPS01	4866982	600449	40	Pozzo superficiale
VPP03	4866931	600456	42	Pozzo profondo
VPS02	4866995	600611	46	Pozzo superficiale
VPS06	4867419	601378	77	Pozzo superficiale
VPS03	4867161	601024	64	Pozzo superficiale
VPS07	4866030	599279	5	Pozzo superficiale
VPP01	4866727	599410	12	Pozzo profondo
VPP04	4866818	599683	20	Pozzo profondo
VTMAR	4863249	597056	1	Acqua superficiale – Ponte Viale a Mare
VTAUR	4863783	597771	2	Acqua superficiale – Ponte SS Aurelia
VTBDA	4869502	603001	500	Acqua superficiale – Base discarica M. Arsiccio
VTLBN	4869520	602992	500	Acqua superficiale – La Berna
VTANG	4869398	602758	422	Acqua superficiale – Buca dell'Angina
VTPPT	4868936	602328	290	Acqua superficiale – Ponte a valle sorgente Mulini
VTPPV	4868196	601809	130	Acqua superficiale – Ponte Piovane
VTBAL	4868024	601745	118	Acqua superficiale – Borgo Allegro
VTCRO	4867600	601554	94	Acqua superficiale – CRO Valdicastello
VTPRG	4867011	600763	50	Acqua superficiale – Ponte Regnalla
VTVAS	4866973	600142	30	Acqua superficiale – Valle vasche sedimentazione
VTSRZ	4866521	599577	17	Acqua superficiale – Ponte SS Sarzanese
VTINC	4865052	599376	2	Acqua superficiale – Ponte inceneritore Pollino
VTOLG	4869494	603091	524	Acqua superficiale – Sommità discarica M. Arsiccio
VTGDO	4869196	602491	360	Acqua superficiale – Guado presso La Vite
VTPPO	4868536	602066	207	Acqua superficiale – Ponte miniera Pollone
VDRPN	4869552	603218	585	Drenaggio minerario – Ribasso Pianello 2

VDOLG	4869479	603092	524	Drenaggio minerario – Galleria Sant'Olga
VDSRM	4869506	602943	482	Drenaggio minerario – Galleria Sant'Erasmo
VDPFR	4868679	602048	228	Drenaggio minerario – Galleria Pozzo Francese
VDRPO	4868439	602028	174	Drenaggio minerario – Ribasso Pollone
DIS 1	4866904	600554	52	Suolo e vegetali – Vasche sedimentazione
DIS 2	4866922	600439	53	Suolo e vegetali – Vasche sedimentazione
DIS 3	4866929	600416	53	Suolo e vegetali – Vasche sedimentazione
DIS 4	4866941	600384	51	Suolo e vegetali – Vasche sedimentazione
DIS 5	4867778	601652	121	Suolo e vegetali – Discarica loc. Rezzaio
DIS 6	4869476	603088	579	Suolo e vegetali – Discarica M. Arsiccio
DIS 7	4869491	603074	571	Suolo e vegetali – Discarica M. Arsiccio
MIN 01	4868713	602065	279	Suolo e vegetali – Discarica Min. Pollone
MIN 02	4868697	602051	280	Suolo e vegetali – Discarica Min. Pollone
VCA 1	4866864	601039	89	Suolo e vegetali – suoli orticoli
VCA 2	4867278	601106	80	Suolo e vegetali – suoli orticoli
VCA 3	4867197	600176	45	Suolo e vegetali – suoli orticoli
VCA 4	4867135	600197	36	Suolo e vegetali – suoli orticoli
VCA 5	4867556	601451	97	Suolo e vegetali – suoli orticoli
VCA 6	4866022	599253	5	Suolo e vegetali – suoli orticoli
VCA 7	4868265	601777	151	Suolo e vegetali – suoli orticoli
VCA 8	4866993	600441	45	Suolo e vegetali – suoli orticoli
VCA 9	4866940	600495	47	Suolo e vegetali – suoli orticoli
VCA 10	4865829	599184	2	Suolo e vegetali – suoli orticoli
VCA 11	4866489	599486	12	Suolo e vegetali – suoli orticoli
VCA 12	4865025	599260	1	Suolo e vegetali – suoli orticoli
PIA2	4869552*	603218*	585*	Materiale biologico – Galleria Ribasso Pianello 2
OLG	4869479*	603092*	524*	Materiale biologico – Galleria Sant'Olga
ANN	4869452*	603152*	550*	Materiale biologico – Galleria Sant'Anna
POL	4868439*	602028*	174*	Materiale biologico – Galleria Rosina
				see del livelle minerarie in qui si sone suelti i

^{*)} Le coordinate geografiche e le quote si riferiscono all'ingresso del livello minerario in cui si sono svolti i campionamenti

Appendice B Dati analitici

Dati analitici sorgenti, pozzi, acque superficiali e drenaggi minerari (1 di 4)

VPS07	VPS03	VPS06	VPS02	VPP03	VPS01	VPP02	VSCRP	SOWSA	VSMOA	VSMOG	VSLNZ	VSCAN	VSPAE	VSPAR	VSMSA	VSTRF	VSDAD	VSVLR	VSVIT	VSVAC	VSFSA	VSSEN	Sigla campione
599279	601024	601378	600611	600456	600449	600152	602739	601499	601499	601499	602760	602561	602232	602142	602402	601391	601511	601797	602378	601961	602316	602898	Easting (UTM)
4866030	4867161	4867419	4866995	4866931	4866982	4867096	4868771	4867440	4867440	4867440	4869005	4869526	4869656	4869836	4868965	4867531	4866946	4869741	4869044	4870251	4870376	4870027	Northing (UTM)
G	64	77	46	42	40	28	527	125	125	125	515	452	625	650	312	96	160	720	290	742	771	753	quota (m s.l.m.)
Pozzo	Sorgente captata	Sorgente captata	Sorgente non captata	Tipologia																			
29/04/15	28/04/15	28/04/15	28/04/15	28/04/15	28/04/15	28/04/15	29/04/15	29/04/15	29/04/15	29/04/15	29/04/15	29/04/15	29/04/15	29/04/15	28/04/15	28/04/15	28/04/15	28/04/15	28/04/15	28/04/15	28/04/15	28/04/15	Data gg/mm/aa
16.8	16.4	16.5	14.8	16.3	15.2	16.8	12.3	14.6	14.5	16.3	12.1	12.7	11.9	12.2	12.0	15.9	13.8	11.0	12.7	10.7	10.7	10.8	T acqua (°C)
22.6	16.3	15.8	15.7	15.6	17.0	20.6	14.9	nd	21.1	19.5	18.5	nd	15.8	15.8	nd	15.9	nd	nd	nd	13.6	nd	12.9	T aria (°C)
7.74	7.29	7.57	7.69	7.60	7.60	7.51	8.11	7.63	7.87	7.54	8.05	8.19	7.84	7.49	6.98	7.89	7.47	7.34	7.80	7.70	7.82	7.33	뫄
nd	0.13	0.15	0.14	0.13	0.12	0.11	nd	nd	nd	0.09	nd	nd	nd	nd	nd	0.16	0.23	0.22	0.20	0.22	0.22	0.20	S E
630	598	514	529	501	503	524	347	443	445	627	298	287	369	360	474	408	547	426	382	397	352	417	EC (µs/cm a 20°)
6.03	4.57	6.83	7.36	5.65	8.14	7.27	6.9	7.90	8.34	7.15	8.95	7.71	8.24	6.70	nd	8.46	nd	nd	nd	nd	nd	nd	O ₂ (mg/L)
66.6	44.6	70.3	73.5	57.8	88.3	75.7	76.0	81.6	85.0	77.6	77.4	80.3	84.6	78.4	nd	98.7	nd	nd	nd	nd	nd	nd	O ₂ sat. %
317	250	238	220	220	226	293	214	171	193	250	207	153	238	256	165	232	244	268	189	244	207	250	HCO ₃ (mg/L)
10.5	9.7	18.0	8.2	14.0	14.6	29.3	5.3	9.5	9.1	8.6	5.7	6.0	6.4	7.5	4.6	8.5	17.3	4.0	10.3	4.8	4.6	4.1	Na (mg/L)
3.25	2.61	7.2	3.09	3.4	7.9	2.78	0.99	1.98	1.43	1.27	0.48	5.00	1.37	1.45	0.81	1.07	11.2	0.33	1.53	0.30	0.43	0.38	K (mg/L)
113	102	86	93	80	89	69	62	94	77	120	69	46	77	72	67	73	87	84	57	70	60	78	Ca (mg/L)
17.7	13.4	8.9	11.8	14.0	11.7	16.2	8.7	10.7	9.2	13.1	12.8	8.2	2.80	5.5	16.8	5.6	4.1	2.15	7.2	5.2	5.9	3.5	Mg (mg/L)
19.6	20.3	16.3	18.5	26.7	20.3	23.4	12.0	20.0	19.9	18.2	17.8	15.2	11.5	11.4	12.7	19.4	22.8	5.7	14.3	8.4	8.4	12.0	Cl (mg/L)
10.5	8.6	15.9	5.2	6.5	5.3	13.7	1.60	3.31	4.0	3.6	1.60	2.00	2.78	3.00	2.20	7.7	30.0	0.28	1.80	0.77	2.50	nd	NO ₃ (mg/L)
101	109	61	102	63	96	22.4	8.0	52	54	143	39	17.0	8.4	7.9	90	15.9	24.4	3.9	23.4	5.6	4.2	4.8	SO ₄ (mg/L)
nd	nd	nd	nd	nd	nd	nd	nd	0.02	nd	NH ₄ (mg/L)													

Dati analitici sorgenti, pozzi, acque superficiali e drenaggi minerari (2 di 4)

VDRPO	VDPFR	VDSRM	VDOLG	VDRPN	VTPPO	VTGDO	VTOLG	VTINC	VTSRZ	VTVAS	VTPRG	VTCRO	VTBAL	VTPPV	VTPPT	VTANG	VTLBN	VTBDA	VTAUR	VTMAR	VPP04	VPP01	Sigla campione
602028	602048	602943	603092	603218	602066	602491	603091	599376	599577	600142	600763	601554	601745	601809	602328	602758	602992	603001	597771	597056	599683	599410	Easting (UTM)
4868439	4868679	4869506	4869479	4869552	4868536	4869196	4869494	4865052	4866521	4866973	4867011	4867600	4868024	4868196	4868936	4869398	4869520	4869502	4863783	4863249	4866818	4866727	Northing (UTM)
174	228	482	524	585	207	360	524	2	17	30	50	94	118	130	290	422	500	500	2	Þ	20	12	quota (m s.l.m.)
Drenaggio minerario	Drenaggio minerario	Drenaggio minerario	Drenaggio minerario	Drenaggio minerario	Acque superficiali	Pozzo	Pozzo	Tipologia															
12/05/15	12/05/15	12/05/15	12/05/15	12/05/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	27/04/15	28/04/15	28/04/15	Data gg/mm/aa
13.1	16.0	13.8	12.5	12.9	13.7	12.2	11.6	15.2	15.3	15.4	15.2	14.7	14.1	13.9	12.2	11.8	12.6	12.3	18.5	18.4	21.1	16.0	T acqua (°C)
15.6	22.2	23.0	18.7	19.4	nd	nd	nd	16.8	16.7	18.5	17.4	16.2	16.0	16.5	nd	nd	14.2	14.2	17.2	16.2	17.4	17.7	T aria (°C)
1.92	4.47	1.63	1.89	2.48	7.83	6.10	2.51	8.11	8.17	8.07	7.98	7.89	8.02	7.90	6.97	2.78	8.28	2.80	7.72	7.71	7.66	7.85	Ŧ
0.60	0.26	0.54	0.60	0.54	nd	nd	nd	0.12	0.12	0.18	0.12	0.15	0.13	0.16	nd	nd	nd	nd	0.09	0.10	0.08	0.13	3 🖺
4960	755	6400	3340	2540	447	418	2255	458	474	450	480	475	538	511	324	1256	168	1479	875	1517	491	499	EC (μs/cm a 20°)
4.82	7.91	2.40	5.10	5.16	8.07	nd	nd	7.85	8.20	8.71	8.70	8.26	8.89	8.48	nd	nd	7.74	8.24	4.63	4.10	7.86	8.47	O ₂ (mg/L)
52.6	87.6	28.7	66.5	63.6	83.2	nd	nd	79.0	82.2	87.6	89.0	82.1	90.0	85.8	nd	nd	80.4	85.5	49.0	44.0	85.0	86.0	0 ₂ sat. %
0	nd	0	0	0	98	15	0	159	183	153	153	73	61	31	55	0	79	0	244	281	183	201	HCO ₃ (mg/L)
9.3	9.3	5.3	5.9	7.5	7.2	4.4	8. 8	10.5	9.2	9.0	9.7	7.4	9.2	7.2	5.9	4.3	5.9	4.6	57	129	10.7	12.1	Na (mg/L)
4.7	7.2	4.5	0.99	0.97	0.89	2.27	0.85	1.19	2.21	1.87	1.60	1.19	0.67	2.01	1.58	1.45	3.7	5.8	16.8	24.0	1.50	5.5	K (mg/L)
140	116	248	320	186	97	55	nd	74	76	72	77	68	74	73	57	80	24.5	115	89	99	85	88	Ca (mg/L)
28.1	25.6	140	149	61	5.9	11.2	nd	9.8	11.1	11.0	12.1	16.2	17.5	17.6	12.6	24.9	3.6	36	18.5	31.9	10.3	9.2	Mg (mg/L)
23.6	27.3	14.7	18.3	11.7	11.8	7.7	11.2	16.4	16.7	13.7	15.3	12.7	12.6	12.8	11.3	8.2	10.6	11.8	112	292	18.6	22.1	CI (mg/L)
^1	^1	<u>^1</u>	^1	^1	1.56	3.10	3.23	4.5	3.8	2.80	2.70	3.4	1.60	1.90	3.20	3.6	2.38	3.8	13.9	12.6	3.31	10.3	NO ₃ (mg/L)
5795	399	7943	3809	1983	144	170	1415	71	92	94	113	173	195	223	151	589	13.9	798	75	75	52	68	SO ₄ (mg/L)
nd	nd	nd	0.20	0.18	nd	0.04	0.14	nd	0.04	0.08	nd	0.20	nd	nd	nd	nd	NH ₄ (mg/L)						

Dati analitici sorgenti, pozzi, acque superficiali e drenaggi minerari (3 di 4)

VPS07	VPS03	VPS06	VPS02	VPP03	VPS01	VPP02	VSCRP	SOMSA	VSMOA	VSMOG	VSLNZ	VSCAN	VSPAE	VSPAR	VSMSA	VSTRF	VSDAD	VSVLR	VSVIT	VSVAC	VSFSA	VSSEN	Sigla campione
1.62	2.32	0.64	0.93	2.61	0.76	0.77	0.11	0.49	0.49	1.45	0.34	0.15	0.09	0.12	0.90	0.44	0.49	0.31	0.29	0.29	0.21	0.24	Li (µg/L)
< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	Be (µg/L)
67	15.4	32.5	12.6	10.5	11.1	23.2	6.8	14.7	13.9	11.0	8.7	10.5	5.4	9.2	4.8	10.7	55	2.63	8.0	4.3	3.7	6.4	B (µg/L)
ω	2	2	ω	ω	4	ū	00	9	7	13	б	10	4	2	33	ω	^1	^1	^1	^1	^1	^1	ΑI (μg/L)
0.48	0.10	0.17	0.09	0.12	0.07	0.24	0.23	0.08	0.08	0.24	0.09	0.12	0.17	0.16	0.04	0.31	0.33	0.14	0.06	0.10	0.18	0.17	V (μg/L)
0.61	0.16	0.33	0.12	0.12	0.13	0.35	0.15	0.19	0.22	0.34	0.11	0.09	0.15	0.20	0.15	0.42	0.48	0.09	0.10	0.09	0.08	0.07	Cr (µg/L)
1.55	0.56	1.22	0.34	1.63	0.99	0.32	0.27	0.33	0.39	0.10	0.32	0.13	0.09	0.09	104	0.07	2.97	0.24	1.85	1.64	0.52	0.59	Mn (μg/L)
41	29.8	28.9	32.8	67	42	29.5	27.1	31.7	25.4	44	25.8	16.9	30.0	25.6	106	27.5	48	29.3	36	33.0	25.3	30.6	Fe (µg/L)
0.18	0.15	0.16	0.14	0.11	0.14	0.16	0.12	0.15	0.16	0.20	0.12	0.09	0.15	0.13	0.62	0.13	0.17	0.15	0.11	0.15	0.12	0.15	Co (µg/L)
5.3	3.8	3.5	3.7	2.90	4.0	4.0	2.93	4.0	4.1	5.3	3.07	2.13	3.9	3.28	8.1	3.4	4.1	4.2	3.07	3.7	2.94	4.0	Ni (µg/L)
1.83	1.87	1.23	2.68	1.14	4.7	1.91	0.76	0.74	0.79	0.59	0.78	0.70	0.68	0.77	1.19	3.5	1.33	0.56	1.44	0.70	0.58	6.1	Cu (µg/L)
63	8.2	403	12.1	14.5	55	6.8	7.1	30.0	36	4.6	2.88	5.2	1.56	5.3	12.6	2.54	4.6	0.60	12.6	3.4	0.68	19.2	Zn (µg/L)
0.31	1.87	3.9	1.75	2.82	1.86	0.60	0.29	0.43	0.42	0.44	0.36	2.78	0.33	0.24	0.37	0.22	0.32	0.23	3.4	0.17	0.18	0.17	As (µg/L)
1.22	0.76	0.89	0.71	0.87	0.78	0.92	0.41	0.88	0.56	0.94	0.90	0.82	0.57	0.84	0.50	1.03	0.83	0.50	0.56	0.41	0.51	0.55	Se (µg/L)
158	885	172	437	713	251	80	65	116	116	917	74	104	54	65	104	76	72	52	107	72	67	96	Sr (µg/L)
0.29	0.40	0.53	0.35	0.37	0.39	0.18	< 0.1	0.19	0.22	0.79	0.19	1.22	< 0.1	< 0.1	0.29	0.20	0.21	< 0.1	0.91	0.12	< 0.1	0.21	Mo (μg/L)
< 0.01	< 0.01	< 0.01	0.03	0.03	0.02	< 0.01	< 0.01	0.15	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.01	< 0.01	0.01	0.05	Ag (µg/L)
0.04	0.03	0.07	0.06	0.04	0.02	< 0.01	< 0.01	0.19	0.19	0.02	< 0.01	0.04	< 0.01	0.01	0.14	< 0.01	0.02	< 0.01	0.06	0.35	< 0.01	0.02	Cd (µg/L)
< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.03	0.02	0.03	0.01	0.03	0.02	0.02	0.04	Sn (μg/L)
0.28	0.41	1.02	2.12	0.34	2.28	0.14	0.11	1.83	1.82	0.32	0.18	0.38	0.15	0.17	0.42	0.05	0.08	0.11	0.95	0.22	0.14	0.18	Sb (µg/L)
89	98	133	72	103	67	40	15.7	32.9	33	25.6	80	94	8.5	48	66	17.5	20.1	5.1	105	35	12.5	9.4	Ba (µg/L)
0.05	0.20	0.75	0.14	0.11	0.06	0.05	0.02	0.74	0.73	0.08	0.03	0.04	0.02	0.02	14.1	0.02	0.04	0.03	0.07	0.05	0.03	0.04	Π (μg/L)
0.25	0.31	0.51	0.17	0.06	0.19	0.14	0.13	0.04	0.13	0.10	0.10	0.03	0.10	0.05	0.27	1.89	0.31	0.03	0.34	0.24	0.11	0.27	Pb (μg/L)
< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	Th (μg/L)
0.79	0.54	0.30	0.40	0.34	0.36	0.27	0.21	0.25	0.25	0.29	0.24	0.89	0.08	0.15	0.37	0.33	0.21	0.05	0.60	0.15	0.13	0.12	U (μg/L)

Dati analitici sorgenti, pozzi, acque superficiali e drenaggi minerari (4 di 4)

VDRPO	VDPFR	VDSRM	VDOLG	VDRPN	VTPPO	VTGDO	VTOLG	VTINC	VTSRZ	VTVAS	VTPRG	VTCRO	VTBAL	VTPPV	VTPPT	VTANG	VTLBN	VTBDA	VTAUR	VTMAR	VPP04	VPP01	Sigla campione
22.9	7.6	23.0	24.3	25.7	1.06	1.21	12.0	0.84	0.89	0.95	1.02	1.29	1.46	1.61	0.87	3.6	0.19	7.1	4.4	7.8	0.40	0.35	Li (µg/L)
2.82	0.34	1.28	1.18	0.74	< 0.01	< 0.01	0.43	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.15	< 0.01	0.22	< 0.01	< 0.01	< 0.01	< 0.01	Be (µg/L)
^1	^1	4	^1	^1	^	4	<u>^1</u>	5.6	2.46	1.01	0.99	^1	^1	^1	^1	^1	5.6	^1	62	117	16.6	23.9	B (µg/L)
21010	1149	11472	6154	5411	^1	^1	2497	^1	<u>^</u>	^	<u>^</u>	<u>^</u>	^	<u>^</u>	<u>^</u>	1169	74	1558	^	^1	4	6	Al (μg/L)
41	< 0.01	75	16.2	13.2	< 0.01	< 0.01	3.3	0.03	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.81	0.29	1.47	0.88	1.26	0.14	0.15	V (μg/L)
57	0.13	29.3	14.6	18.2	0.05	0.04	6.6	0.13	0.11	0.11	0.12	0.02	0.01	< 0.01	0.07	2.75	0.11	5.4	0.13	0.15	0.25	0.24	Cr (μg/L)
2294	1605	5439	2801	3341	72	199	1406	17.1	2.76	12.4	22.1	59	83	171	77	691	11.5	967	155	223	0.52	0.25	Mn (μg/L)
1091676	1780	1630125	364026	483490	45	185	164973	37	26.4	24.2	19.9	21.3	18.9	21.8	29.8	79755	48	92938	47	47	36	27.6	Fe (μg/L)
221	22.5	67	37	11.3	0.30	1.63	9.5	0.20	0.19	0.29	0.37	0.63	0.97	1.73	0.34	6.0	0.12	7.1	0.92	0.69	0.17	0.21	Co (µg/L)
482	54	295	225	225	4.3	10.5	101	3.9	4.3	4.1	4.4	5.0	6.1	9.2	4.2	37	2.4	69	5.9	6.3	4.6	3.7	Ni (μg/L)
3025	88 88	170	102	10.3	1.27	1.11	22.6	3.09	1.43	1.93	1.51	1.61	1.19	1.19	0.90	15.5	1.77	15.5	4.4	8.7	2.50	1.52	Cu (µg/L)
62405	2488	1270	1463	502	5.5	15.9	404	21.5	13.9	11.4	9.5	14.3	22.6	77	2.3	163	9.9	269	27.2	15.5	17.9	25.9	Zn (µg/L)
6705	0.79	1914	335	1447	0.17	0.22	197	0.83	0.70	0.51	0.38	0.25	0.23	0.16	0.15	34	4.0	96	6.2	7.3	2.46	1.76	As (µg/L)
15.0	2.63	10.5	6.0	4.8	0.52	0.46	3.4	0.52	0.44	0.57	0.48	0.42	0.33	0.58	0.47	1.86	0.54	1.50	0.35	0.51	0.73	0.78	Se (µg/L)
361	240	1317	1057	926	110	103	547	145	166	143	149	119	134	138	91	231	44	371	361	604	163	157	Sr (μg/L)
5.4	< 0.1	10.4	< 0.1	0.84	0.28	< 0.1	< 0.1	0.29	0.29	0.28	0.26	0.26	0.21	< 0.1	< 0.1	< 0.1	0.17	0.43	0.81	1.40	0.49	0.30	Mo (μg/L)
0.63	0.76	0.28	0.15	0.07	< 0.01	0.04	0.26	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.06	0.08	0.07	0.40	0.02	0.03	< 0.01	0.01	Ag (μg/L)
387	4.3	9.8	6.9	4.0	0.05	0.24	2.92	0.05	0.07	0.13	0.16	0.22	0.35	0.93	0.05	1.35	0.13	1.55	0.03	0.02	0.05	0.04	Cd (µg/L)
0.23	< 0.01	0.26	0.09	< 0.01	< 0.01	0.02	0.02	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01	< 0.01	0.03	0.03	0.01	0.08	0.02	0.02	0.04	< 0.01	Sn (μg/L)
627	0.61	130	31.7	95	0.54	0.15	9.6	1.45	1.79	1.70	1.66	1.81	1.69	0.72	0.19	1.78	0.74	4.0	1.85	1.06	1.92	1.22	Sb (µg/L)
11.7	23.5	23.6	5.2	8.8	49	58	23.7	48	44	45	44	46	53	69	32.6	56	57	27.3	38	29.4	93	110	Ba (µg/L)
312	11.1	641	148	229	12.6	12.0	93	3.24	4.3	4.8	5.9	13.6	14.8	18.3	9.3	41	0.09	64	1.06	0.30	0.12	0.17	Π (μg/L)
388	30.7	24.6	41	74	1.06	< 0.01	24.4	0.17	0.02	0.13	0.03	0.05	< 0.01	0.02	0.32	10.3	0.33	17.9	0.69	0.41	0.23	0.22	Pb (μg/L)
132	1.25	30.8	2.56	1.71	< 0.01	0.01	0.95	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	1.84	< 0.01	0.66	< 0.01	< 0.01	< 0.01	< 0.01	Th (μg/L)
82	1.40	27.5	15.1	2.57	0.09	0.01	3.8	0.34	0.34	0.32	0.28	0.21	0.14	< 0.01	0.01	2.49	0.08	2.04	0.32	0.38	0.38	0.31	U (μg/L)

DATI ANALITICI SUOLI E PIANTE

V(CA 1												
VC	A 1– Macroelemen	ti (mg kg ⁻¹)	Al	Ca	Fe	K	M	g	Mn	Na	P	S	Ti
		foglie	769	15506	89	3 74	193 2	2511	44,0	905	5431	9917	9,76
	Cavolo nero	fusto	213	11401	24	4 47	751 2	2478	13,6	2154	5249	4204	5,19
		radici	245	4023	21	6 52	275 1	032	7,5	903	5213	2714	4,32
ali	G 1	foglie	38	12636	11-	4 79	984 2	2419	28,6	1016	4155	8837	2,74
Vegetali	Cavolo nero cartoccio	fusto	68	5288	9	4 61	.59	452	7,2	1836	3256	2479	2,60
Ş	cartocolo	radici	6182	4379	577.	3 81	.52	770	72,4	986	4123	3882	42,24
		foglie	698	15271	71	8 2	287 2	275	29,1	3187	4893	3249	9,43
	Finocchio	fusto	324	8775	41	1 45	669 1	984	19,3	3960	9249	3209	11,38
		radici	522	7288	47	8 27	63 2	2133	25,7	2377	5061	1370	8,50
	Interfaccia radici	Cavolo nero	33436	7876	2339	8 83	540 5	5444	359	873	3097	988	423
0	Interfaceia faulei	Cavolo n. cart.	23994	2469	2229	1 50	31 3	3777	270	382	1199	341	310
Suolo		0-10 cm	28042	7393	2541	5 64	43 4	1256	351	550	3098	842	346
92	Profilo	10-30 cm	33113	8181	2734	7 80)25 4	1690	363	744	3085	795	434
		80-100 cm	36665	1042	2501	0 70	32 5	3326	988	593	723	97,3	638
VC	A 1- Microelementi	(mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
		foglie	<0,01	0,40	31,6	13,1	<0,002	0,10	<0,03	<0,06	4,92	8,74	0,078
	Cavolo nero	fusto	<0,01	0,29	22,5	23,4	<0,002	0,09	<0,03	<0,06	3,06	4,54	<0,05
		radici	<0,01	0,25	14,2	13,5	<0,002	0,06	<0,03	0,08	5,16	8,35	<0,05
ali	Cavolo nero	foglie	<0,01	0,26	22,3	17,8	<0,002	0,13	<0,03	<0,06	0,81	4,60	0,078
Vegetali	cartoccio	fusto	<0,01	0,12	15,2	24,2	<0,002	0,13	<0,03	<0,06	2,14	3,17	0,065
Λ		radici	<0,01	2,72	14,8	71,8	0,08	0,12	9,8	1,70	30,28	30,51	0,074
		foglie	<0,01	0,52	31,9	89,9	<0,002	0,10	<0,03	<0,06	2,70	12,86	<0,05
	Finocchio	fusto	<0,01	0,41	25,9	16,0	<0,002	0,13		<0,06	7,47	26,48	<0,05
		radici	<0,01	0,29	24,6	11,7	<0,002	0,23	 	<0,06	5,99	62,97	<0,05
	Interfaccia radici	Cavolo nero	<0,05	10,4	12,4	267	1,16	0,31		10,9	64,2		<0,10
lo		Cavolo n. cart.	<0,05	10,6	5,7	155	0,77	0,15		8,1	53,5	66,6	<0,10
Suolo		0-10 cm	<0,05	12,3	10,4	219	1,00	0,23		10,3	60,7	83,4	<0,10
0.1	Profilo	10-30 cm	<0,05	10,8	11,8	259	1,17	0,23		10,1	57,7	81,8	<0,10
		80-100 cm	<0,05	11,4	9,3	189	1,16	<0,05	88,5	13,1	54,1	26,2	<0,10
VC	A 1- Microelementi	1	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
		foglie	3,26	3,78	1,44	3,46	0,91	1,55	 	30,8	0,10	0,84	64,1
	Cavolo nero	fusto	2,17	1,38	0,47	1,88	0,75	1,40	1	35,2	0,17	0,04	44,0
		radici	1,68	2,00	0,36	2,08	<0,08	0,45	+	17,9	0,17		30,3
tali	Cavolo nero	foglie	1,78	0,91	0,15	1,50	0,79	1,46		26,1			45,4
Vegetal	cartoccio	fusto	1,86	<0,01	0,06	1,41	0,86	1,26		22,1	0,16		39,5
^		radici	13,12	2,34	6,06	17,31	1,24	1,56	-	23,1	0,14	8,15	55,1
		foglie	3,36	3,95	0,79	2,83	0,72	1,00		18,5	0,13		60,8
	Finocchio	fusto	2,41	0,67	1,38	2,84	0,97	1,26		23,9	0,18		98,5
		radici	2,79	0,37	1,13	3,65	0,79	1,24	· ·	31,5			107,7
	Interfaccia radici	Cavolo nero	46,9	2,71	25,6	59,3	2,73	<0,01		41,2			236,3
olo		Cavolo n. cart.	34,1	2,22	20,3	52,1	2,33	0,61	+	14,5	<0,50		93,7
Suolo		0-10 cm	39,2	3,23	26,5	56,6	2,54	0,70		38,2	<0,50		256,5
	Profilo	10-30 cm	45,1	2,91	24,5	56,5	2,62	<0,01	3,64	41,4			251,7
		80-100 cm	53,3	1,72	31,7	33,5	1,91	<0,01	2,30	16,5	<0,50	49,0	88,0

VC	CA 2 CA2 - Macroelementi (mg kg ⁻¹) Al Ca Fe K Mg Mn Na P S Ti foglie 17 11797 94 8393 1813 58.0 1805 4181 7340 2,62													
VCA	A2 – Macroelemen	nti (mg kg ⁻¹)	Al	Ca	Fe	ŀ	C I	Mg	Mn	Na	P	S	Ti	
		foglie	1'	7 1179	7	94 8	3393	1813	58,0	1805	4181	7340	2,62	
	Cavolo nero	fusto	58	729	3	95 8	8078	1957	21,0	7192	4085	1856	2,97	
		radici	342	6170	5 4	03 8	3229	1818	20,0	5110	4389	3683	4,45	
		foglie	80	1969	3 1	21 5	5939	1024	19,7	3757	2300	5672	2,62	
	Rapa ciocca	fusto	532	5032	2 8	95 5	5623	1001	43,7	1276	3295	5122	4,99	
Vegetali		radici	542	2 589	7 8	83 8	3301	1096	40,9	1511	3250	5153	5,52	
/eg		foglie	450	5 450	5 120	19	652	7361	1925	73,6	1265	5035	6803	
	Rapa	fusto	29'	7 1536	7 5	57 3	8818	1537	32,0	1889	4249	5598	5,05	
		radici	195	6148	3 24	93 5	5782	1805	74,9	2389	5813	4965	17,67	
		foglie	9	924	3 1	73 7	7845	1608	31,9	2074	4497	6913	3,46	
	Cipolla	fusto	144	630	7 2	43 8	8078	1118	18,9	3107	5243	11107	4,63	
		radici	20	606	1 2	94 6	6881	903	20,2	2490	5208	6976	4,23	
	Interfaccia	Cavolo nero	2445	363	5 237	46 6	6614	4639	661	494	1230	598	463	
0	radici	Rapa	2421	395	1 264	60 6	5561	4712	664	484	1346	598	448	
Suolo		0-10 cm	1849′	389	5 222	75 4	1896	3841	542	339	1220	462	367	
S	Profilo	10-30 cm	25409	4380	236	94 7	132	4606	636	515	1348	509	486	
		80-100 cm	1982	3 235	1 268	03 5	5274	4130	831	326	521	659	349	
VCA	A 2 – Microelemen	nti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg	
		foglie	<0,01	0,26	15,0	31,5	<0,002	0,18	<0,03	<0,06	1,29	4,27	0,08	
	Cavolo nero	fusto	<0,01	0,16	15,5	77,4	<0,002	0,22	<0,03	<0,06	1,69	4,12	0,07	
		radici	<0,01	1,65	18,0	136,2	<0,002	0,29	<0,03	0,18	4,40	24,69	0,09	
		foglie	<0,01	0,42	20,7	214,7	<0,002	0,31	<0,03	<0,06	1,04	3,60	0,06	
	Rapa ciocca	fusto	<0,01	1,88	15,7	79,3	<0,002	0,32	<0,03	0,38	8,72	19,06	0,06	
Vegetali		radici	<0,01	1,73	17,2	84,8	<0,002	0,35	<0,03	0,28	8,38	19,89	0,07	
, g		foglie	<0,01	1,27	26,6	62,5	<0,002	0,52	<0,03	< 0,06	4,54	15,40	0,08	
	Rapa	fusto	< 0,01	0,79	26,3	104,9	<0,002	0,54	<0,03	0,37	4,43	9,02	0,07	
		radici	0,26	4,71	23,7	179,5	<0,002	0,55	4,0	0,89	26,69	32,30	0,07	
		foglie	<0,01	0,40	29,1	32,0	<0,002	0,46	<0,03	<0,06	3,55	10,02	0,08	
	Cipolla	fusto	<0,01	0,52	51,0	53,0	<0,002	0,49	<0,03	<0,06	3,19	20,66	0,08	
		radici	<0,01	0,91	31,4	68,0	<0,002	0,55	<0,03	< 0,06	3,64	22,94	0,09	
	Interfaccia	Cavolo nero	1,73	47,7	16,9	1411	1,10	1,33	68,1	12,7	61,1	172,4	< 0,10	
9	radici	Rapa	1,83	58,7	16,9	1431	1,08	1,47	79,6	13,0	65,2	186,5	<0,10	
Suolo		0-10 cm	1,46	44,7	12,8	1110	0,87	1,26	64,8	11,2	61,7	126,7	<0,10	
9 1	Profilo	10-30 cm	2,07	45,0	17,8	1333	1,09	1,33	74,2	13,1	63,4	148,1	<0,10	
		80-100 cm	3,06	111,3	11,7	2265	0,86	2,66		13,0	43,1	53,4	0,47	
VCA	A 2 Microelement		Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn	
		foglie	1,78	1,15	0,03	1,81	0,82	1,57	0,15	26,7	0,13	0,03	37,8	
	Cavolo nero	fusto	1,87	<0,01	0,11	3,92	0,96	1,48		37,7	0,13	0,02	47,8	
		radici	2,79	1,63	0,66	17,24	1,19	1,50		42,9	0,16	0,49	82,1	
		foglie	2,02	3,73	<dl< td=""><td>2,67</td><td>0,91</td><td>1,43</td><td>0,21</td><td>66,7</td><td>0,15</td><td>0,01</td><td>23,8</td></dl<>	2,67	0,91	1,43	0,21	66,7	0,15	0,01	23,8	
=	Rapa ciocca	fusto	3,15	2,01	1,17	21,98	1,01	0,62	0,17	24,6	0,12	0,82	49,3	
eta		radci	3,46	2,07	1,44	20,44	1,40	1,37	0,16	28,7	0,13	0,73	107,4	
Vegetali		foglie	3,28	8,01	0,67	14,38	1,30	1,61	0,25	39,2	0,17	0,48	68,3	
	Rapa	fusto	2,88	3,91	0,43	10,43	1,22	1,36	1	61,5	0,14	0,31	56,4	
		radici	9,11	6,89	3,09	59,38	2,19	1,14		45,4	0,12	3,46	85,4	
		foglie	1,96	0,82	0,32	4,30	0,98	1,71	0,29	21,9	0,18	0,01	47,4	
	Cipolla	fusto	2,19	0,23	0,56	6,03	1,13	1,79		29,9	0,17	0,04	79,8	
		radici	2,29	0,54	1,20	9,11	0,91	1,29	0,25	33,3	0,18	0,05	158	
	Interfaccia	Cavolo nero	58,2	2,0	27,4	534	22,5	<0,01	2,48	39,9	<0,50	38,7	283	
9	radici	Rapa	59,8	2,3	28,7	549	24,2	<0,01	2,03	40,9	<0,50	38,5	306	
Suolo	_	0-10 cm	47,7	2,3	25,1	442	20,2	<0,01	1,55	33,5	<0,50	29,4	257	
9 1	Profilo	10-30 cm	60,7	2,1	26,9	529	20,2	<0,01	2,06	41,5	<0,50	41,2	292	
		80-100 cm	47,3	2,2	29,2	862	33,7	<0,01	1,19	47,9	<0,50	31,8	520	

VC	CA 3 CA 3 - Macroelementi (mg kg ⁻¹) Al Ca Fe K Mg Mn Na P S Ti													
VCA	A 3 - Macroelemo	enti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	M	[n	Na	P	S	Ti	
		foglie	36	11444	95	805	1 19	02	20,8	1263	4743	9471	3,16	
	Cavolo nero	fusto	22	3521	42	798	8 19	00	4,5	1163	3497	2288	2,34	
		radici	2649	6026	3104	825	2 26	94	30,5	608	4188	5893	17,75	
ali		foglie	255	18076	384	657	4 20	55	43,7	896	4859	7354	5,32	
Vegetali	Rapa	fusto	50	17296	93	524	4 15	97	12,5	1917	3670	5937	2,56	
Λ		radici	3705	6866	5171	266	5 19	24	54,9	1837	5187	6661	30,51	
		foglie	89	18246	153	633	5 21	48	20,9	3215	3641	4668	3,11	
	Finocchio	fusto	144	147	10749	199	9 <0,0	10	1946	11,5	4041	6473	2048	
		radici	3107	4417	4445	823	9 19	77	49,3	1342	3342	552	31,70	
	Interfaccia	Rapa	33905	5721	35152	849	6 59	47 4	06,1	455,2	1878,4	564,3	436,3	
	radici	Cavolo nero	36578	11303	34851	918	4 69	23 4	19,9	521,2	1860,3	687,6	490,2	
Suolo		Finocchio	45114	6350	38470	1205	1 78	02 4	16,4	739,3	1807,6	631,9	577,6	
Sn		(0-10 cm)	44173	8425	35827	1212	6 80	31 4	11,0	710,2	1763,8	725,2	577,2	
	Profilo	(10-30 cm)	36760	7259	36137	926	8 68	54 4	08,1	474,3	1666,7	2126,2	472,6	
		(80-100 cm)	45850	1731	47194	1027	7 64	82 3	47,0	517,0	814,2	128,1	564,6	
VCA	3 - Microeleme	1	Ag	As	В	Ba	Be	Cd	Ce	Co		Cu	Hg	
		foglie	<0,0		20,0	14,5	<0,002	0,10	<0,0	3 <0,0			0,09	
	Cavolo nero	fusto	<0,0	1 0,07	10,5	46,3	<0,002	0,09	<0,0	3 <0,0	06 0,57	2,92	0,07	
		radici	<0,0		19,4	46,9	0,048	0,08	4,				0,07	
tali		foglie	<0,0		23,6	36,4	<0,002	0,16	<0,0				0,08	
Vegetali	Rapa	fusto	<0,0		24,9	55,8	<0,002	0,17	<0,0				0,07	
>	radici		<0,0		23,4	81,4	0,113	0,11	8,				0,06	
	Finocchio foglie fusto		<0,0		29,1	30,6	<0,002	0,09	<0,0				0,06	
			<0,0		30,5	69,7	<0,002	0,11	<0,0				0,07	
		radici	<0,0		22,0	60,0	0,076	0,10	7,				0,05	
		Rapa	<0,0		21,8	292	1,87	0,31	77,	_			<0,50	
_	Interfaccia radio		<0,0		25,0	254	1,88	0,31	69,	_			<0,50	
Suolo		Finocchio	<0,0:		33,8	306	2,32	0,31	79,	_			<0,50	
S		(0-10 cm)	<0,0:		33,3	420	2,28	0,31	80,	_	<u> </u>		<0,50	
	Profilo	(10-30 cm)	<0,0:		23,2	2500	1,95	0,31	82,	-			<0,50	
WOA	2 25	(80-100 cm)	<0,0:		26,3	164	2,53	0,16	102,				<0,50	
VCA	<mark>A 3 - Microeleme</mark> 	1	Li 1,8'	Mo	Ni 0.01	Pb	Sb 0.78	Se	Sn	Sr 4 26	Tl	V	Zn 23.7	
	Cavala mana	foglie	1,78		0,01	1,58	0,78 0,75	1,63	0,2			_	23,7	
	Cavolo nero	fusto			0,01	1,30		1,16					12,4 37,8	
		radici foglie	12,69		3,45 0,24	5,18 1,85	1,14 0,77	1,00	0,2	_			34,8	
etal	Pana	fusto	1,9	-	0,24	1,34	0,77	1,17	0,3				20,6	
Vegetali	Rapa	radici	22,39	-	5,80	10,64	1,62	1,08	0,1	-			52,7	
		foglie	2,0		0,30	1,56	0,69	1,66	0,2	-			41,9	
	Finocchio	fusto	2,3:	_	0,57	2,34	0,09	1,55	0,3	_		-	36,6	
	1 mocemo	radici	15,7	_	5,37	8,08	1,46	0,80	0,3	_			26,0	
	1	Rapa	97,		41,2	64,3	5,5	<0,01	3,3				124	
	Interfaccia radio	-	98,	_	45,6	47,1	4,9	<0,01	2,6				116	
0	Interfaceia radio	Finocchio	105,	_	47,5	57,6	6,7	<0,01	6,09				116	
Suolo		(0-10 cm)	103,		45,9	58,0	5,4	<0,01	8,43				117	
J ₂	Profilo	(10-30 cm)	98,		46,3	50,7	5,4	<0,01	2,3				117	
	1 101110	(80-100 cm)	108,	_	53,4	36,4	5,3	<0,01	2,0	_			73,4	
		(00-100 CIII)	100,	0,1	33,4	30,4	3,3	~0,01	2,0.	10	, ∪ \0,40	19,8	13,4	

V	CA 4												
VC	A 4– Macroeleme	nti (mg kg ⁻¹)	Al	Ca	Fe	K	M	lg l	Mn	Na	P	S	Ti
ii		frutto	20	942	2	59 83	317	1506	9,9	191	2856	2126	1,60
Vegetali	Peperoncino	foglie	130	9190) 1	62 6	745	1830	12,2	614	2492	2726	3,05
Λ		fusto	32	7752	2	57 70	603	1985	6,3	463	2589	1914	1,89
		0-10 cm	16044	24381	163:	59 48	892	7943	406	471	3075	2312	422
Suolo	Profilo	10-30	18267	24461	186	59 54	433	8859	441	448	3144	736	447
9 1		80-100	11663	8141	163	60 42	243	2497	359	275	651	260	296
VC	<mark>A 4- Microelemen</mark>	iti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Co	Cr	Cu	Hg
Ħ		frutto	<0,01	0,42	29,5	18,2	<0,002	0,15	<0,03	<0,06	2,12	4,33	0,08
Vegetali	Peperoncino	foglie	<0,01	0,14	10,9	14,8	<0,002	0,12	<0,03	<0,06	0,90	7,03	0,06
N N		fusto	<0,01	0,28	7,8	8,6	<0,002	0,15	<0,03	<0,06	1,68	5,01	0,08
		0-10 cm	0,13	19,7	15,5	2525	0,71	0,39	41,8	10,5	136,1	58,7	<0,5
Suolo	Profilo	10-30	<0,05	25,2	15,2	1035	0,78	0,47	39,4	10,7	141,1	68,4	<0,5
9 2		80-100	<0,05	34,3	6,9	806	0,55	0,39	67,0	10,5	44,4	29,2	<0,5
VC	A 4- Microelemen	nti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	T1	V	Zn
ij		frutto	4,72	5,04	0,01	1,91	0,93	1,36	0,30	13,2	0,17	0,03	17,8
Vegetali	Peperoncino	foglie	1,80	2,09	0,14	2,73	0,86	1,74	0,43	1,7	0,14	0,06	15,0
À		fusto	2,27	1,51	0,01	1,58	0,74	1,46	0,24	18,8	0,22	0,03	22,2
_		0-10 cm	37,4	2,60	49,0	64,5	6,5	<0,01	1,72	150,2	<0,40	26,8	171
Suolo	Profilo	10-30	43,9	3,11	61,6	82,3	6,8	<0,01	1,96	75,2	<0,40	29,9	174
91		80-100	22,1	1,52	17,0	52,7	6,8	<0,01	0,85	25,6	<0,40	18,9	74,3

V	VCA 5 CA 5- Macroelementi (mg kg ⁻¹) Al Ca Fe K Mg Mn Na P S Ti												
.VC.	A 5– Macroelemei	nti (mg kg ⁻¹)	Al	Ca	Fe	K	. N	Иg	Mn	Na	P	S	Ti
		foglie	218	1795	3 2	76 7	591	2205	64,0	906	4520	8740	5,22
	Cavolo nero	fusto	144	1006	5 1	68 4	142	2122	19,1	2292	3616	3182	3,79
		radici	1912	976	18	66 8	268	1512	69,3	929	4283	5701	18,1
		foglie	77	1212	3 1	36 7	681	1514	32,8	975	4185	6270	3,36
ali	Rapa	fusto	29	1599	1	75 6	837	1300	12,8	1276	2292	3994	1,79
Vegetali		radici	1186	8059	9 11	69 6	894	947	46,9	2042	2668	4656	13,0
>	Porro radici	foglie/fusto	877	784	1 9.	38 8	242	1185	37,5	1295	2669	3611	13,2
	T OTTO TUGICI	radici	4090	8179	9 42	42 8	775	3311	146	6896	3990	5894	63,3
		foglie	739	1706				2131	45,1	4522	3335	3712	8,97
	Finocchio	fusto	328	1111				1678	18,2	11111	5268	2005	6,61
		radici	479	635				1952	22,9	5738	3384	1574	7,49
	Interfaccia	Rapa	34639	33150	_		483	6520	792	940	4788	972	605
_	radici	Porro	22961	30692	_		162	4646	540	703	3672	1214	437
Suolo		Porro	34827				670	6344	710	936	4009	826	648
Š		0-10 cm	26866		_		881	5255	672	605	3818	702	514
	Profilo	10-30 cm	31473	3674				5457	814	884	3752	669	599
		80-100 cm	52766	455				7133	867	781	1787	189	839
VC	A 5- Microelement		Ag	As	В	Ba	Be	Cd		Co	Cr	Cu	Hg
		foglie	<0,01	0,18	23,9	38,9	<0,002	0,			2,43	8,11	0,09
	Cavolo nero	fusto	<0,01	0,02	17,0	39,2	<0,002		17 <0,03		1,87	4,92	0,07
		radici	<0,01	2,56	18,4	180,6	<0,002		36 2,6	_	42,91	63,07	0,08
		foglie	<0,01	0,27	23,1	18,9	<0,002	0,			1,78	5,10	0,07
tali	Rapa	fusto	<0,01	0,01	22,8	47,1	<0,002	0,			4,04	3,21	0,07
Vegetali		radici	<0,01	1,16	15,9	105,9	<0,002	0,			11,19	19,41	0,08
^	Porro	foglie/fusto	<0,01	0,78	12,5	82,9	<0,002		22 <0,03		9,26	14,91	0,07
		radici	<0,01	5,35	16,4	233,5	0,064		74 10,70		129,47	59,35	0,10
	Finocchio	foglie	<0,01	0,96	27,1	84,1	<0,002		12 <0,03		7,31	18,64	0,07
	Finoccnio	fusto	<0,01	0,68	32,8	77,9	<0,002		12 <0,03	,	7,46	17,25	0,06
		radici	<0,01	0,79	21,6	75,2	<0,002		17 <0,03	_	5,61	27,31	0,07
	T 4 C	Rapa	0,68	24,7	38,6	1685	1,57	1,			131,7	239,0	0,71
0	Interfaccia radici	Porro	0,69	17,6	27,3	1484	1,08	1,			148,4	211,1	0,54
Suolo		Porro	0,72	24,8	36,4	1564	1,49		34 62,8		145,4	220,9	0,71
S	D £1-	0-10 cm	0,72	23,3	28,0	1595	1,26		26 54,3		157,9	189,3	0,63
	Profilo	10-30 cm 80-100 cm	0,78 0,16	28,8 35,3	34,0	1612 311	1,47		40 67,0 85 85,2		101,6 80,5	193,0 53,6	0,78 <0,5
VC	A 5 Microslamon	1	0,10 Li				2,55	0,		_		V V	
V C	<mark>A 5- Microelement</mark>	foglie	2,40	Mo 4,07	Ni 0,19	Pb 2,78	Sb 0,90	Se 1	Sn 45 0,24	Sr 1 23,1	Tl 0,06		Zn 49,2
	Cavolo nero	fusto	2,30	1,09	0,19	2,71	0,76		13 0,29		0,15	0,03	50,3
	Cavolo licio	radici	7,87	8,90	3,42	22,13	1,65	1	16 0,23		0,13	4,35	108,7
		foglie	1,98	7,92	0,09	2,08	0,82	2,			0,13	0,02	36,8
ii.	Rapa	fusto	1,84	2,23	0,03	1,91	0,95	1,			0,17	0,02	19,9
eta	mp.m	radici	6,49	5,67	1,60	14,01	1,06		64 0,47		0,13	2,07	44,1
Vegetali		foglie/fusto	4,92	0,95	1,21	10,20	1,00		46 0,51		0,12	1,27	45,8
	Porro	radici	16,56	7,58	7,74	41,39	2,43	1,				6,93	102,3
		foglie	4,59	2,95	1,18	9,75	1,02		23 0,31		0,19	1,04	50,9
	Finocchio	fusto	3,09	0,24	0,78	5,51	1,17		51 0,28		0,16	0,29	55,9
		radici	3,57	0,08	0,95	10,70	1,28	1	15 0,39		0,08	0,70	38,3
		Rapa	90,1	2,5	33,1	247,6	8,5	<0,			<0,43	50,5	432,6
	Interfaccia radici	Porro	67,4	3,0	27,5	265,2	7,8	<u> </u>),8 25,20		<0,40	35,2	372,6
olo		Porro	92,0	2,5	30,0	251,6	8,3	<0,			<0,40	51,1	345,1
Suolo		0-10 cm	76,8	1,5	28,3	230,2	7,7	<0,			<0,40	39,8	321,3
	Profilo	10-30 cm	86,8	1,7	30,7	281,4	10,9	<0,			<0,40	46,6	356,6
		80-100 cm	101,4	3,3	48,7	236,8	7,2					84,3	228,2
		1		/	,								

V	CA6												
VC	A 6 – Macroeleme	nti (mg kg ⁻¹)	Al	Ca	Fe	K	M	lg l	Mn	Na	P	S	Ti
		foglie	41	18594	12	25 82	203 2	2000	41,6	603	3844	8125	2,55
	Cavolo nero	fusto	140	6572	2 20	08 70	564 1	1618	13,0	1696	3078	3439	3,43
Vegetali		radici	1656	5290	19'	71 55	536 2	2098	51,1	1032	3549	3231	13,67
/ego		foglie	167	12931	. 23	39 83	307	1951	40,2	626	4248	5690	4,13
	Rapa	fusto	101	16015	5 13	34 60	004	1880	15,5	975	3226	6135	2,95
		radici	1294	7732	13:	54 41	102	3472	38,7	2898	7094	7378	19,21
	Interfaccia	Cavolo nero	17761	9344	1830	01 49	019 3	3815	349	402	1173,7	467	443,6
•	radici	Rapa	23991	8696	194	10 70	616	1348	363	622	1242,2	408	541,9
Suolo		0-10 cm	26248	11866	205	11 81	173	1676	391	675	1210,2	347	562,1
S	Profilo	10-30 cm	25473	10174	1979	95 78	386	4401	364	782	836,0	572	571,1
		80-100 cm	33385	9617	292	12 77	772	6106	4936	584	518,4	465	586,6
VC	A 6 - Microelemen	ti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
		foglie	<0,01	0,32	25,4	39,8	<0,002	0,16	<0,03	<0,06	1,31	4,95	0,08
	Cavolo nero	fusto	<0,01	0,27	16,41	51,5	<0,002	0,13	<0,03	<0,06	5,61	4,30	0,06
stali		radici	<0,01	3,35	14,8	94,1	<0,002	0,18	4,30	1,16	31,36	16,46	0,08
Vegetali	Rapa	foglie	<0,01	0,39	17,48	29,8	<0,002	0,21	<0,03	<0,06	1,66	7,16	0,08
		fusto	<0,01	0,18	27,70	69,9	<0,002	0,24	<0,03	<0,06	2,00	3,96	0,07
		radici	<0,01	2,17	22,2	91,8	<0,002	0,29	<0,03	0,48	18,66	15,43	0,05
	Interfaccia radici	Cavolo nero	0,07	20,3	10,1	354	0,77	0,54	53,1	9,0	59,7	78,0	<0,50
0	interraccia radici	Rapa	0,18	20,3	14,4	426	1,01	0,47	63,3	9,2	110,2	81,5	<0,50
Suolo		0-10 cm	<0,05	21,7	13,8	490	1,10	0,55	64,8	9,8	57,9	95,1	<0,50
9 2	Profilo	10-30 cm	<0,05	21,3	13,7	454	1,10	0,47	64,9	9,3	82,0	52,5	<0,50
		80-100 cm	0,25	53,8	17,7	1923	1,49	0,70	76,4	13,9	48,7	36,7	<0,50
VC	A 6 n- Microeleme	nti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
		foglie	1,84	11,48	0,10	1,81	0,78	1,70	0,18	14,1	0,24	0,03	30,7
·=	Cavolo nero	fusto	2,18	1,96	0,62	2,15	0,83	1,18	0,22	15,5	0,26	0,06	13,7
Vegetali		radici	6,81	7,59	3,06	10,60	1,11	0,49	0,28	14,8	0,25	2,74	28,9
Veg		foglie	2,16	12,93	0,15	2,44	0,83	1,32	0,24	13,3	0,26	0,01	36,3
	Rapa	fusto	2,02	4,56	0,10	2,02	0,78	1,35	0,12	25,2	0,23	0,02	21,4
		radici	6,42	9,61	1,63	7,68	1,50	1,02	0,20	22,5	0,22	2,20	44,6
	Interfaccia radici	Cavolo nero	44,7	1,9	22,8	74,3	4,9	<0,01	1,45	21,0		27,1	102,7
9		Rapa	52,5	2,7	23,0	77,1	5,3	<0,01	1,98	21,7		-	116,5
Suolo		0-10 cm	57,9	1,7	24,0	80,2	5,2	<0,01	1,99	26,2		36,7	111,6
J 1	Profilo	10-30 cm	54,7	2,3	25,7	75,7	5,3	<0,01	1,92	26,0			113,6
		80-100 cm	89,1	2,1	33,1	166,5	10,4	<0,01	1,78	24,0	<0,40	50,7	159,5

V	CA 7												
VC	<mark>A 7– Macroelemen</mark>	ti (mg kg ⁻¹)	Al	Ca	Fe	K	M	g	Mn	Na	P	S	Ti
		0-13 cm	18131	14712	326	04 49)78 4	1064	1272	483	2004	4684	311
	D £1-	0-13 cm	15912	15360	324	54 40	065	1214	1465	409	2355	6845	291
	Profilo	13-26 cm	17179	13712	325	45 47	728	1421	1198	522	1844	6730	323
		13-26 cm	15586	14314	330	82 39	068	1588	1376	432	2123	6632	304
Suolo		Sabbia 0-13	3981	9205	3162	29 9	136	1991	330	150	644	5523	123
Su		Sabbia 13-26	4280	12510	303	70 11	133 2	2022	308	145	667	5799	132
	Profilo frazioni tessiturali	Limo 0-13	23623	20135	325	80 48	891 (5445	2378	740	3662	4051	399
		Limo 13-26	28313	19347	323	24 68	819	5811	2375	952	3492	3759	489
		Argilla 0-13	16640	114053	435	85 88	319 20	978	1418	13279	2546	27902	252
		Argilla 13-26	20738	100217	802	60 40	585 11	1367	2490	11627	3753	18612	322
VC	A 7– Microelemen	ti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Co	Cr	Cu	Hg
		0-13 cm	6,51	178,9	16,30	2751	0,87	7,95	35,7	17,8	1 50,9	174,2	6,52
	Profilo	0-13 cm	6,88	200,1	15,28	2725	0,79	8,74	33,1	20,8	0 55,0	178,8	7,88
	FIOIIIO	13-26 cm	6,43	166,3	14,42	2727	0,87	7,64	34,2	15,9	2 58,8	137,9	6,78
		13-26 cm	6,60	188,5	12,96	2744	0,80	8,27	32,0	17,7	3 55,5	164,6	7,71
Suolo		Sabbia 0-13	1,03	85,8	2,83	2722	0,24	2,20	11,3	7,4	7 17,9	39,2	3,70
Su	Profilo frazioni	Sabbia 13-26	1,05	77,7	3,54	2722	0,24	2,12	10,6	8,3	4 17,7	37,4	2,75
	tessiturali	Limo 0-13	14,35	291,7	22,43	2735	1,19	15,14	55,3	26,4	8 60,6	271,9	11,57
		Limo 13-26	13,53	292,6	25,17	2721	1,49	15,73	60,6	26,5	0 71,4	269,0	12,98
		Argilla 0-13	6,37	171,9	116,90	2933	0,81	9,16	27,7	16,3	7 149,1	179,8	<0,5
		Argilla 13-26	10,76	288,1	57,70	15098	0,87	13,45	46,0	38,3	5 911,1	258,1	<0,5
VC	A 7– Microelemen	ti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
		0-13 cm	34,83	7,79	63,4	498	116,1	<0,01	39,05	65	8 12,49	59,1	1630
	Profilo	0-13 cm	31,27	8,51	70,7	597	127,6	<0,01	39,15	63	3 12,37	62,3	1820
	1 101110	13-26 cm	33,65	7,57	47,4	491	111,9	<0,01	32,31	65	3 16,86	59,6	1584
		13-26 cm	30,38	8,35	52,8	546	122,5	<0,01	27,75	64	0 17,02	62,0	1742
Suolo		Sabbia 0-13	9,91	5,11	27,9	125	81,0	<0,01	56,41	40	0 <0,50	44,5	525
Su	D &1- & · ·	Sabbia 13-26	10,86	5,27	26,0	109	74,4	<0,01	12,43	40	8 <0,50	45,6	513
	Profilo frazioni tessiturali	Limo 0-13	47,88	11,18	86,2	1007	199,8	<0,01	19,98	66	1 19,10	77,8	3028
		Limo 13-26	54,74	11,88	90,1	999	204,5	<0,01	27,13	65	6 23,59	94,4	3036
		Argilla 0-13	65,58	7,33	101,2	603	104,5	<0,01	12,32	112	4 15,07	36,0	2077
		Argilla 13-26	53,80	22,13	489,8	1059	182,2	<0,01	22,47	112	4 <0,50	52,5	3332

V	CA 8												
VC	A 8– Macroelem	nenti (mg kg ⁻¹)	Al	Ca	Fe	K	M	g N	⁄In	Na	P	S	Ti
ili		foglie	20,1	17937	7 90,9	99	21 2	214	25,9	574	4198	5913	4,25
Vegetali	Cavolo	fusto	21,5	4904	29,7	101	06 1	308	11,2	751	3831	3690	4,06
))	nor o	radici	1055	8297	7 1794	102	91 1	396	57,0	909	3622	2521	9,81
	Interfaccia radici	cavolo nero	17114	17270	16258	74	91 2	769	250	723	1424	603	489
Suolo		0-10 cm	30109	16403	3 26093	85	09 7	987	409	591	2419	1519	500
S	Profilo	10-30 cm	27514	15860	27398	73:	51 7	857	425	461	2405	1431	460
		80-100 cm	28757	4936	31777	72	60 4	490	353	396	733	194	430
VC	A 8 - Microelem	enti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Co	Cr	Cu	Hg
ali		foglie	0,02	0,04	17,1	34,8	<0,02	0,02	1,38	<0,06	<0,20	4,35	<0,02
Vegetali	Cavolo nero	fusto	0,02	0,06	12,17	24,2	<0,02	0,02	1,68	<0,06	1,01	3,65	<0,02
Λ		radici	0,01	0,90	14,7	256	<0,02	0,01	6,57	0,37	61,11	71,88	<0,02
	Interfaccia radici	cavolo nero	0,08	10,5	12,5	1315	0,70	17,3	62,8	7,80	77,0	188,0	<0,20
Suolo		0-10 cm	0,09	22,9	24,4	1473	1,50	0,35	60,9	14,8	111,8	79,0	<0,50
S	Profilo	10-30 cm	<0,05	26,0	19,2	1768	1,37	0,39	60,8	15,05	107,1	83,7	<0,50
		80-100 cm	<0,05	34,1	16,6	485	1,54	0,28	84,6	17,8	52,6	33,0	<0,50
_VC	A 8 - Microelen	nenti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
ali		foglie	0,28	11,11	0,08	0,38	1,19	0,73	0,28	27,3	0,27	0,06	21,0
Vegetali	Cavolo nero	fusto	0,26	1,64	0,08	0,37	1,10	0,49	0,35	17,7	0,28	0,05	18,0
V		radici	4,40	4,90	2,87	12,1	1,95	0,34	0,19	47,0	0,27	1,82	62,2
	Interfaccia radici	cavolo nero	29,4	1,6	14,62	69,5	5,76	<0,10	3,33	63,9	0,45	22,09	138
Suolo		0-10 cm	72,2	4,0	47,5	61,3	5,95	<0,01	5,08	94,7	<0,40	50,12	144
S	Profilo	10-30 cm	71,4	4,4	53,95	66,5	6,10	<0,01	2,17	54,0	<0,40	46,43	145
		80-100 cm	65,2	4,8	35,2	44,6	6,05	<0,01	1,44	20,8	<0,40	49,35	73,9

V(CA 9												
VC	<mark>A 9 – Macroelem</mark>	enti (mg kg ⁻¹)	Al	Ca	Fe	K	M	ig N	/In	Na	P	S	Ti
Ħ	<i>c</i> :	foglie	417	4618	412	8 48	388	1281	122	644	915	422	18,8
Vegetali	Graminacee	radici	799	4449	1080	7 39	22 1	1009	318	1209	744	3024	72,5
>	Muschio	fusticino	2906	10460	449	3 60	70 2	2132	109	1125	1307	785	24,8
	Interfaccia radici	graminacee	23027	5722	1909	9 74	01 2	2457	243	801	562	139	496,0
Suolo		0-10 cm	21926	9240	1996	9 65	323	3915	299	699	714	440	475,1
S	Profilo	10-30 cm	6823	9984	4413	6 29	16	717	151	199	367	10618	149,6
		80-100 cm	4457	7149	5274	2 18	390 1	1540	161	156	184	32594	69,4
VC	A 9 - Microeleme	nti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Co	Cr	Cu	Hg
ij	Ci	foglie	1,69	2,09	2,07	744	<0,02	0,04	2,18	3 1,0	6,02	9,85	0,08
Vegetali	Graminacee	radici	0,08	4,29	2,11	822	<0,02	0,20	3,74	2,9	7 32,1	10,1	0,02
>	Muschio	fusticini	0,01	3,09	3,44	1213	<0,02	0,02	<0,03	3 1,0	2 136,53	12,8	0,02
	Interfaccia radici	graminacee	<0,05	6,35	7,7	405	0,85	5,7	60,22	6,2	2 87,0	18,7	<0,20
Suolo		0-10 cm	<0,05	8,07	9,0	940	0,78	9,2	54,82	7,2	0 180,1	23,9	<0,20
Š	Profilo	10-30 cm	13,79	146,04	10,4	2385	0,40	10,0	13,0	3,5	7 41,1	62,2	9,83
		80-100 cm	20,15	211,12	5,4	356	0,31	7,1	11,44	3,3	0 36,6	61,5	21,31
_VC	A 9 - Microelem	enti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
Ξ	Graminacee	foglie	2,15	1,98	3,19	17,9	7,79	0,39	0,2	20,	7 0,15	3,41	29,7
Vegetali	Grammacee	radici	4,09	6,11	8,07	88,7	31,07	0,35	0,74	94,	5 0,21	9,27	109,2
>	Muschio	fusticini	7,79	4,04	6,35	8,40	2,69	0,30	0,29	48,4	2 0,28	4,82	24,41
	Interfaccia radici	graminacee	31,81	1,540	14,56	18,6	3,00	<0,10	1,62	2 29,	6 0,40	28,96	38,0
Suolo		0-10 cm	34,30	1,879	19,73	25,1	4,86	<0,10	1,49	47,	7 0,47	28,11	54,0
S	Profilo	10-30 cm	11,81	8,399	16,24	566,9	361,33	2,06	1,14			35,58	311,1
		80-100 cm	5,68	11,202	17,81	658,7	684,56	2,33	0,82	546,	9 73,8	26,99	412,0

V	VCA 10												
VC.	A 10 – Macroe	lementi (mg kg ⁻¹)	Al	Ca	Fe	K	M	g	Mn	Na	P	S	Ti
		foglie	29,02	24157	81	,3 90	647	1263	25,25	653	3529	5725	4,03
	Cavolo nero	fusto	34,13	6333	94	,2 70	637	1695	7,29	1480	4153	3190	4,92
etali		radici	6,53	4323	5 55	,6 102	250	1899	11,44	1430	1732	540	2,82
Vegetali		Foglie + cime	42,73	10326	1	14 90	611	874	23,27	1056	3415	5369	4,07
	Rapa	fusto	29,56	4271	. 1:	56 99	984	557	6,69	1767	2258	2631	3,37
		radici	481,16	6559	66	46 92	256	2136	178	957	1290	3718	36,0
	Interfaccia radici	Rapa	21302	3424	2098	86 73	306	3716	336	613	614	155	511
Suolo		0-10 cm	24060	5912	219	23 82	231	4226	357	664	655	226	506
S	Profilo	10-30 cm	26307	5990	225	83 90	033	4509	408	769	651	209	548
		80-100 cm	16040	1573	180	55 59	998	2456	195	508	476	393	477
VC.	A 10 - Microel	ementi (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Co	Cr	Cu	Hg
		foglie	0,02	0,07	20,71	69,80	<0,002	0,014	1,64	<0,06	0,32	3,10	<0,010
	Cavolo nero	fusto	0,02	0,04	15,67	107,40	<0,002	0,013	1,53	<0,06	0,63	4,24	<0,010
tali		radici	0,02	0,08	8,50	5,13	<0,002	0,016	1,50	<0,06	0,80	6,09	<0,010
Vegetali	Rapa	Foglie +cime	0,02	0,06	21,92	42,57	<0,002	0,003	0,18	<0,06	2,15	5,50	<0,010
		fusto	0,02	0,08	17,83	77,26	<0,002	0,005	1,66	<0,06	9,43	3,45	<0,010
		radici	0,02	11,71	9,57	352,93	<0,002	0,148	20,41	2,89	30,14	21,04	0,013
	Interfaccia radici	Rapa	0,06	23,27	11,1	473	0,95	3,4	65,80	8,52	45,5	36,6	<0,20
Suolo		0-10 cm	0,13	25,41	13,1	773	1,03	5,9	65,77	8,86	36,2	39,6	<0,20
Š	Profilo	10-30 cm	0,12	26,55	14,3	701	1,11	6,0	66,24	9,35	36,1	39,9	<0,20
		80-100 cm	0,06	16,27	7,3	1387	0,70	1,6	68,89	6,42	30,6	27,8	<0,20
.VC	A 10 - Microel	lementi (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	\mathbf{V}	Zn
		foglie	0,32	1,49	0,073	0,11	1,13	0,99	0,37	28,00	0,21	0,050	15,92
	Cavolo nero	fusto	0,32	1,31	0,082	0,37	1,13	0,82	0,29	17,66	0,11	0,053	10,02
Vegetali		radici	0,53	0,01	0,085	0,22	1,02	0,00	0,34	32,26	0,23	0,055	36,15
Veg		Foglie +cime	0,33	2,88	0,065	0,09	1,06	1,35	0,35	6,51	0,29	0,051	28,44
	Rapa	fusto	0,28	0,89	0,090	0,06	1,22	0,35	0,28	10,94	0,23	0,054	15,13
		radici	21,60	5,45	8,23	37,18	1,76	0,31	0,24	22,55	0,25	7,43	46,28
	Interfaccia radici	rapa	53,73	1,341	18,86	83,6	6,15	<0,10	1,60	15,5	0,51	30,14	98,0
Suolo		0-10 cm	60,23	1,187	20,26	90,2	6,81	<0,10	1,73	22,7	<0,40	33,56	112,4
Ś	Profilo	10-30 cm	64,18	1,109	21,39	100,2	6,81	<0,10	1,73	22,7	0,42	36,21	118,8
		80-100 cm	35,10	0,852	14,03	50,6	6,90	<0,10	1,07	27,9	0,45	22,01	66,3

VC	CA 11												
VCA	11 – Macroelen	nenti (mg kg ⁻¹)		Al	Ca	Fe	K	Mg	Mn	Na	P	S	Ti
Е		foglie	18,	12 7	568	92,6	9141	1169	23,4	600	3283	4857	3,85
Vegetal	- Cavolo nero	fusto	18,	89 2	310	76,5	7667	960	4,1	770	944	496	2,40
Ν		radici	10	67 4	112	1295	8956	1885	42,8	974	1924	2259	11,21
	Interfaccia radici	Cavolo nero	201	69 2	668	2148	6823	3657	430	532	769	598	460,4
Suolo		0-10 cm	181	32 2	143	3077	6272	3414	504	469	997	1256	394,0
2	Profilo	10-30 cm	190	37 1	911 2	3310	6340	3598	524	451	925	1041	409,8
		80-100 cm	150	22 1	079	8378	5737	2509	297	439	386	141	440,1
VCA	11 - Microelem	nenti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Co	Cr	Cu	Hg
al		foglie	0,015	0,06	12,24	49,5	<0,002	<0,0	0,09	<0,06	0,71	4,61	<0,02
Vegetal i	Cavolo nero	fusto	0,014	0,08	5,31	271	<0,002	2 0,0	1,35	<0,06	2,37	2,64	<0,02
Λ		radici	0,41	1,85	9,19	1386	<0,002	2 0,3	36 4,88	<0,06	15,11	21,18	<0,02
	Interfaccia radici	Cavolo nero	1,20	37,63	12,3	1413	0,90	2,0	64,21	9,93	44,8	80,4	0,08
Suolo		0-10 cm	2,22	51,18	13,3	2378	0,86	5 2	,1 65,46	11,22	66,7	117,8	0,31
S	Profilo	10-30 cm	2,35	51,98	13,4	2354	0,85	1	,9 62,63	11,34	44,1	124,1	0,25
		80-100 cm	0,41	25,65	10,0	531	0,64	1	,1 94,21	9,03	48,8	23,3	0,22
_VC	A 11 - Microeler	nenti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
al		foglie	0,29	0,03	1,10	0,34	1,20	0,4	0,39	10,5	0,24	0,05	36,8
'egetal i	Cavolo nero	fusto	0,25	0,03	0,51	10,87	1,13	0,4	0,36	13,2	0,21	0,05	33,9
>		radici	4,58	0,95	1,18	68,46	1,80	0,1	0,22	28,2	0,25	1,38	80,4
	Interfaccia radici	Cavolo nero	56,2	1,80	19,8	324	17,18	<0,1	.0 1,78	50,5	0,41	30,73	181,3
Suolo		0-10 cm	55,5	2,83	19,0	521	29,91	<0,1	1,89	91,1	<0,40	30,06	256,1
S	Profilo	10-30 cm	58,6	2,25	20,7	564	28,21	<0,1	1,96	85,5	<0,40	31,31	264,6
		80-100 cm	39,9	1,52	14,2	143	9,75	<0,1	1,01	13,7	0,45	22,69	87,7

VC	CA 12												
VCA	12 – Macroele	menti (mg kg ⁻¹)	Al	Ca	Fe	K	N	/Ig	Mn	Na	P	S	Ti
al		foglie	229	14405	30	02 92	232	907	25,79	867	3048	3860	4,89
Vegetal	- Rapa	fusto	349	7043	54	18 10	175	1431	16,85	1232	3553	3855	6,07
Λ		radici	701	6722	98	36 99	953	2559	23,14	1201	4226	4945	7,87
	Interfaccia radici	Rapa	28811	12933	2433	31 103	394	4931	405	1016	1338	1061	548
Suolo		0-10 cm	25938	22506	2721	15 87	779	5826	500	782	1804	1875	390
Š	Profilo	10-30 cm	36320	22443	2767	76 134	481	6146	474	1420	2062	1967	586
		80-100 cm	34331	19213	2771	17 111	181	9134	742	1260	1598	578	449
VCA	12 - Microele	Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg	
al		foglie	0,014	0,02	15,52	107	<0,002	0,02	25 1,81	<0,06	1,17	5,57	<0,02
Vegetal i	Rapa	fusto	0,014	0,03	15,18	189	<0,002	0,02	29 1,87	<0,06	8,82	6,39	<0,02
Λ		radici	0,012	1,30	14,38	302	<0,002	0,04	19 2,53	<0,06	16,43	9,72	<0,02
	Interfaccia radici	Rapa	0,59	30,11	14,56	1438	1,23	12	,9 61,7	11,8	50,7	50,2	0,19
Suolo		0-10 cm	1,01	37,75	13,7	2418	1,04	22	,5 50,60	13,57	48,4	57,0	0,71
Š	Profilo	10-30 cm	1,12	36,95	18,0	2403	1,51	22	,4 57,57	14,99	55,9	63,8	0,98
		80-100 cm	0,38	27,72	17,1	1583	1,42	19	,2 55,67	13,15	61,4	58,2	0,51
"VC.	A 12 - Microele	ementi (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	\mathbf{V}	Zn
≔		foglie	0,83	4,76	<0,02	1,42	1,27	0,4	41 0,31	28,73	0,21	0,02	27,7
Vegetali	Rapa	fusto	1,26	4,55	0,15	2,26	1,39	0,3	0,26	30,37	0,24	0,01	39,8
>		radici	2,64	9,32	0,87	4,91	1,64	0,2	29 0,23	35,15	0,28	0,87	57,9
	Interfaccia radici	Rapa	58,07	1,74	23,54	98,08	18,66	<0,1	3,4 7	96,6	1,29	43,5	214,3
Suolo		0-10 cm	56,58	2,24	29,05	111,0	30,33	<0,1	3,7 4	164,4	0,35	43,34	294,1
S	Profilo	10-30 cm	62,41	2,14	28,23	112,5	31,17	<0,1	10 5,3 3	177,6	1,01	56,86	330,5
		80-100 cm	56,93	2,05	38,03	94,8	10,63	<0,1	10 2,24	61,3	2,32	74,25	200,0

MIN	1												
MIN 1-	- Macroelemen	ti (mg kg ⁻¹)	Al	Ca	Fe	K	M	lg N	/In	Na	P	S	Ti
	Graminacee	foglie	160	3384	18	88 16	638	474	71,8	205	565	438	3,10
	Pino	aghifoglie	101	3212	8	32 44	122	962	41,6	1288	1218	1808	1,73
		foglie	207	7875	47	0 43	320 2	2417 1	107,0	788	1029	2035	3,63
etal	A arbusto	fusto	212	2557	29	06 27	731	674	39,7	235	776	908	3,73
Vegetali		radici	161	863	58	35 24	150	517	52,7	173	624	607	2,50
		foglie	377	5790	71	1 38	352 1	268	167,5	827	670	1623	5,14
	B arbusto	fusto	125	1789	26	7 23	393	486	90,9	424	455	745	2,18
		radici	75	634	28	80 19	74	463	37,8	169	562	499	1,43
		O (6-0 cm)	10200	10357	1977	2 38	392 1	232	102,0	444	591	9651	190,7
•		A (0-4,5 cm)	12237	6407	3304	18 43	310 1	216	137,2	499	787	9743	199,6
Suolo	Profilo	AB (4,5-8,5 cm)	8896	4208	2831	1 37	788	815	96,4	411	306	9680	187,4
Ø		BC (8,5-12 cm)	5307	556	2147	9 22	257	325	15,3	391	235	9416	73,9
		C (12+ cm)	3790	497	2369	6 15	561	275	19,1	257	173	9572	57,6
MIN 1-	Microelement	ti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
	Graminacee	foglie	0,01	0,08	0,00	80,0	<0,002	0,30	<0,03	<0,06	7,96	3,09	0,10
	Pino	aghifoglie	0,17	0,28	14,20	16,1	<0,002	1,42	<0,03	<0,06	1,30	4,03	0,16
		foglie	0,26	1,90	46,00	598	<0,002	0,14	<0,03	<0,06	1,90	6,29	1,90
etal	A arbusto	fusto	0,02	0,38	4,83	143	<0,002	0,09	<0,03	<0,06	2,19	7,49	0,07
Vegetali		radici	0,55	1,56	1,15	511	<0,002	0,38	<0,03	<0,06	5,61	6,46	0,10
		foglie	0,24	2,65	30,56	937	<0,002	0,12	<0,03	<0,06	2,33	8,51	0,13
	B arbusto	fusto	0,11	0,50	5,19	297	<0,002	0,10	<0,03	<0,06	2,00	5,84	0,09
		radici	0,29	0,78	0,75	270	<0,002	0,25	<0,03	<0,06	3,35	6,06	0,82
		O (6-0 cm)	9,6	109,8	6,3	2519	0,39	4,16	25,7	7,4	45,4	48,5	9,10
0		A (0-4,5 cm)	12,7	129,4	8,2	2525	0,47	10,91	28,8	7,1	51,5	66,1	23,85
Suolo	Profilo	AB (4,5-8,5 cm)	14,1	136,4	5,4	2497	0,38	7,33	27,6	6,8	44,8	59,8	21,13
9 2		BC (8,5-12 cm)	16,3	144,0	3,7	2498	0,23	4,51	25,9	2,7	27,1	22,9	12,84
		C (12+ cm)	34,3	234,6	2,2	2519	0,16	4,94	18,9	2,4	29,7	26,3	17,73
MIN 1-	Microelement	i (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
	Graminacee	foglie	1,80	0,01	0,48	5,8	<0,08	1,13	0,34		0,12	0,04	254,4
	Pino	aghifoglie	2,01	0,03	0,32	1,7	0,84	1,52	0,32	1	1,18	0,15	66,9
:=		foglie	2,13	0,04	1,58	16,8	2,96	1,89	0,32	22,6	1.18	0,15	56,2
Vegetali	A arbusto	fusto	1,92	0,02	0,76	5,8	1,33	1,33	0,34	8,9	0,10	0,24	12,0
Veg		radici	1,78	0,08	0,62	52,2	6,74	0,85	0,28	12,2	4,10	0,01	36,5
		foglie	2,54	0,02	2,88	21,7	2,32	1,66	0,50	29,5	47,6	0,70	29,8
	B arbusto	fusto	1,88	0,04	1,64	11,2	1,56	1,83	0,44			0,06	16,3
		radici	1,27	0,11	0,51	24,0	3,00	0,55	0,19		3,57	0,09	22,1
		O (6-0 cm)	12,1	3,1	12,2	1318	181	<0,01	2,13		28,2	16,8	902
ol		A (0-4,5 cm)	12,6	3,7	16,3	1356	229	0,9	3,76		83,4	21,2	1933
Suolo	Profilo	AB (4,5-8,5 cm)	11.8	2,9	13,8	1312	228		2,89	513	49,9	15,8	1288
3,		BC (8,5-12 cm)	4,2	2,6	3,8	1572	234	0,6	1,31	545	41,2	7,7	571
		C (12+ cm)	4,2	5,0	5,4	2908	324	0,9	0,93	564	49,9	10,9	479

•

M	IN 2												
MIN	N 2– Macroelem	nenti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	M	[n	Na	P	S	Ti
	T	foglie	320	13663	33	4 40	533	1421	18,4	339	1256	5536	4,48
	Erica	fusto	81	4262	10	4 50	648	763	4,2	361	651	1575	1,58
etali	Graminacee	foglie	352	2966	109	8 21	14	363	8,5	184	383	1460	6,48
Vegetali	del profilo	radici	855	3642	302	4 15	541	464	33,8	327	371	1183	11,91
	Graminacee	foglie	357	2885	99	6 18	867	334	7,7	202	354	1443	7,02
	Grammacee	radici	817	3720	280	1 15	518	454	31,5	397	357	1218	11,18
		A1 (0-5/7)	11899	84476	3049	6 40	557	5619	243,5	655,6	334,1	12057	369,4
Suolo	Profilo	AB (5/7-11/18)	11216	35451	3043	1 36	594	4149	312,2	491,8	271,4	11059	229,8
Su	FIOIIIO	Bw (18-24)	6664	5415	4181	5 20	71	1614	73,1	241,3	159,8	11947	153,5
		IIC (24+)	2779	1941	4187	9 10	149	188	4,8	82,2	105,7	37339	146,2
MIN	MIN 2- Microelementi (mg kg ⁻¹)		Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
		foglie	0,06	0,12	11,46	175,4	<0,002	0,18	8 <0,	03 <0,0	06 2,17	7 10,99	0,10
	Erica	fusto	0,03	0,01	5,96	24,2	<0,002	0,29	9 <0,	03 <0,0	06 1,90	9,85	0,08
tali	Graminacee	foglie	0,23	1,14	0,55	1589,0	<0,002	0,2	5 <0,	03 <0,0	06 6,95	6,61	0,14
Vegetali	del profilo	radici	2,33	9,34	1,34	1723,5	<0,002	1,90	6 <0,	03 0,73	32 32,37	41,79	0,26
	<i>c</i> :	foglie	0,24	1,31	0,84	1293,8	<0,002	0,20	0 <0,	03 <0,0	06 6,68	7,47	0,11
	Graminacee	radici	2,65	9,29	1,90	1438,8	<0,002	1,8	5 2,	50 0,	78 31,30	42,20	0,23
		A1 (0-5/7)	9,6	96,1	6,7	2530	0,47	3,70	0 21	1,1 8	,0 46,1	95,4	8,04
Suolo	Profilo	AB (5/7-11/18)	10,7	111,4	6,5	2518	0,47	7,1	4 20	5,3 10	,0 39,4	74,8	8,71
Su	FIOIIIO	Bw (18-24)	13,3	149,7	3,9	2483	0,31	5,3	5 18	3,1 5	32,0	48,6	9,78
		IIC (24+)	24,9	212,9	<dl< th=""><th>1440</th><th>0,08</th><th>7,6</th><th>7</th><th>0,2</th><th>,9 17,1</th><th>69,9</th><th>21,06</th></dl<>	1440	0,08	7,6	7	0,2	,9 17,1	69,9	21,06
MI	N 2- Microelem	enti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
	Erica	foglie	2,03	0,02	1,62	3,6	1,10	1,5	1 0,	22 35	,9 0,18	0,31	35,8
	Linea	fusto	1,84	0,02	0,61	2,2	0,81	1,1	5 0,	25 15	,4 0,09	0,02	22,8
Vegetali	Graminacee	foglie	1,99	0,52	1,32	17,1	1,72	0,9	6 0,	34 34	,7 0,59	0,68	78,4
Veg	del profilo	radici	2,75	1,46	5,51	173,0	8,09	1,19	9 0,	40 36	,4 7,32	1,37	136,3
	Graminacee	foglie	1,52	0,74	1,37	16,5	1,19	0,49	9 0,	17 28	,5 0,68	0,72	70,5
	Grammacce	radici	2,31	1,53	6,28	164,7	6,23	0,40		24 31			140,8
		A1 (0-5/7)	25,2	2,0	23,2	1009	91,4	0,	4 2,	82 5	75 14,9	25,5	843,2
Suolo	Profilo	AB (5/7-11/18)	24,9	2,4	26,9	1184	119,2	0,	5 2,	00 5	73 18,0	18,5	1380
Su	1101110	Bw (18-24)	14,3	2,9	18,5	1071	159,8	0,9	9 0,	93 50	65 23,7		1482
		IIC (24+)	2,0	3,0	11,3	1456	237,2	1,0	6 0,	67 24	40 28,3	5,2	2262

.

.

DI	S 1												
DIS	1- Macro	elementi (mg kg ⁻¹)	Al	Ca	Fe	K	M	[g	Mn	Na	P	S	Ti
	Alloro	foglie	49,1	5336	18	88 40	541	1220	82,47	152	958	819	2,78
ij	Alloro	fusto	22,7	4939	73	,0 40	056	558	59,32	90	410	274	2,26
Vegetali		foglie	81,1	13763	129	90 58	307	3620	45,11	342	851	1583	3,25
>	Edera	fusto	33,0	9583	310	60 30	615	1363	33,03	704	433	436	2,38
		radici	256	5110	728	88 49	922	1189	33,10	1111	638	2152	5,60
		A (0-5 cm)	3431	1822	9802	28 15	522	565	126	153	399	3738	91,4
		Bw (5-25 cm)	3686	278	9329	91 10	510	331	143	132	349	3836	94,6
Suolo	Profilo	2C (25-33 cm)	1755	252	9434	14 8	377	155	38	102	130	5710	57,0
Sn	Tiomo	3C (33-35 cm)	3817	304	8060	05 19	963	315	41	171	106	4422	120,2
		(35-38 cm)	997	402	1682	75 4	146	127	37	65	108	4153	66,5
		4C (39+ cm)	1429	373	1937	72 (667	188	46	79	190	5597	72,4
DIS	1- Microe	lementi (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
	Alloro	foglie	0,01	0,02	8,19	232,28	<0,002	0,0	09 1,	31 <0,	06 1,01	6,31	0,010
ali	Allolo	fusto	0,01	0,07	7,97	121,84	<0,002	0,	33 1,	41 <0,	06 0,27	4,30	0,016
Vegetali		foglie	1,04	1,73	14,56	1822,28	<0,002	0,0	05 0,	58 <0,	06 4,58	5,71	0,030
N	Edera	fusto	0,59	0,69	8,49	586,21	<0,002	0,2	26 1,	40 <0,	06 3,93	5,63	0,026
		radici	4,15	10,88	7,11	2343,04	<0,002	0,	51 4,	94 <0,	06 41,00	14,24	0,129
		A (0-5 cm)	16,17	165,30	5,0	2413	0,16	1	,8 5,	35 1,	88 44,5	13,5	12,7
		Bw (5-25 cm)	16,02	157,54	4,3	2415	0,24	0	,3 5,	47 2,	02 33,9	12,4	12,87
Suolo	Profilo	2C (25-33 cm)	22,93	196,46	3,1	2347	0,08	0	,3 5,	26 2,	14 52,4	8,5	19,24
Sı		3C (33-35 cm)	21,64	171,99	6,9	2351	0,23	0	,3 6,	15 4,	82 42,4	7,2	15,05
		(35-38 cm)	21,20	150,55	0,8	2421	0,07	0	,4 1,	82 2,	18 28,6	6,0	22,07
		4C (39+ cm)	10,22	272,89	0,7	2435	0,07	0	,4 4,	43 2,		8,1	24,83
DIS	1- Microel	lementi (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
	Alloro	foglie	0,30	0,02	0,07	1,75	1,90	<0,0	02 0,	42 30,	35 0,08	0,04	51,43
tali		fusto	0,21	0,01	0,07	0,74	1,45	<0,0	02 0,	36 32,	75 2,24	5,08	48,53
Vegetali		foglie	0,42	0,35	0,15	6,02	5,24	0,		35 112,	65 0,13	0,34	93,24
_	Edera	fusto	0,43	0,15	0,05	6,03	2,35	<0,0	02 0,	37 76,	43 0,06	0,04	53,92
		radici	0,81	3,52	3,94	126,21	17,21	<0,0	02 0,	12 202,	58 23,86	2,63	45,70
		A (0-5 cm)	6,31	14,27	14,59	248,5	429,0	2,	13 1,	31 554	45,98	73,74	288,2
		Bw (5-25 cm)	6,16	13,97	11,29	208,8	338,6	2,0	05 1,	34 554	37,65	59,04	296,8
Suolo	Profilo	2C (25-33 cm)	2,39	12,16	13,16	347,7	547,9	2,	15 1,	04 543	64,87	59,25	265,9
S		3C (33-35 cm)	6,59	10,40	11,64	315,5	429,0	1,5	86 1,	13 543	88,36	68,97	184,8
		(35-38 cm)	2,69	15,74	31,17	340,8	590,2	5,		80 549		197,78	465,2
		4C (39+ cm)	2,87	22,04	34,49	197,0	958,1	3,0	67 1,	91 559	70,74	182,83	207,2

DI	S 2												
DIS	2 – Macroelen	menti (mg kg ⁻¹)	Al	Ca	Fe	K	Mg	N	/In	Na	P	S	Ti
Veg.	Graminacee	foglie	849	7981	1551	49	14 1	017	93	1596	1111	1291	12,9
À	Grammacce	radici	774	5987	11627	42	09	907	240	1151	959	2042	11,8
		A (0-3 cm)	23937	38425	23386	67	01 6	795	560	1370	616	1165	542,9
Suolo	Profilo	B (3-11 cm)	28234	30908	28156	70	15 5	073	639	1250	488	724	587,9
Su	1101110	C (11-45 cm)	4444	1233	156883	18	61	563	72	164	192	3947	106,4
		C/D (80-100 cm)	2728	8041	129287	11	98	307	80	113	199	19945	59,5
DIS	DIS 2 - Microelementi (mg kg ⁻¹)		Ag	As	В	Ba	Be	Cd	Ce	Co	Cr	Cu	Hg
Veg.	Graminacee	foglie	0,15	2,54	4,35	1839	<0,02	0,01	3,6	<0,0	6,74	12,44	0,02
A	Grammacee	radici	2,24	15,24	3,45	2116	<0,02	0,21	0,8	<0,0	18,13	12,14	0,10
		A (0-3 cm)	0,21	16,30	13,5	2386	0,94	38,4	44,1	7 10,5	5 97,6	26,2	0,16
Suolo	Profilo	B (3-11 cm)	0,10	17,38	11,6	2359	0,94	30,9	61,2	13,29	55,0	38,2	0,57
Su	FIOIIIO	C (11-45 cm)	14,19	848	5,3	2373	0,23	1,2	4,5	2,4	26,4	12,3	30,55
		C/D (80-100 cm)	7,56	628	3,1	1608	0,08	8,0	6,3	2,0	3 41,1	11,4	15,61
DIS	2 - Microelem	enti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
Veg.	Graminacee	foglie	2,04	1,34	1,77	10,1	3,36	<0,02	0,3	54,	5 6,8	1,36	40,5
A	Grammacee	radici	1,88	5,27	6,16	75,5	22,8	<0,02	0,1	1 105,	85,34	5,28	74,8
		A (0-3 cm)	46,38	2,05	33,46	49,8	16,2	<0,10	1,6	137,	0 2,15	37,40	93,1
Suolo	Profilo	B (3-11 cm)	57,57	1,18	30,12	43,6	13,0	<0,10	1,8	93,	6 0,49	37,83	91,3
Sug	FIUIIIO	C (11-45 cm)	7,52	23,8	18,53	197,6	1264,1	6,36	1,7	1 541,	3 192,79	71,04	168,4
		C/D (80-100 cm)	3,71	13,2	32,87	166,6	622,0	2,44	1,3	472,	94,52	41,39	343,0

DI	S 3													
DIS	3– Macroelen	nenti (mg kg ⁻¹)	Al	Ca	Fe	K		Mg	N	I n	Na	P	S	Ti
0		(0-7 cm)	3343	519	3673	36 12	269	33	32	39	135	155	4722	79,5
Suolo	Profilo	(7 - 22 cm)	3387	297	485	56 14	413	18	86	5	149	44	4461	45,2
91		(80-100 cm)	2905	6271	4818	34 12	265	107	70	128	119	173	27177	48,0
DIS	DIS 3- Microelementi (mg kg ⁻¹)		Ag	As	В	Ba	Be		Cd	Ce	Со	Cr	Cu	Hg
0		(0-7 cm)	8,83	142,06	4,4	2404	0,	16	0,5	11,82	2,15	25,1	12,2	7,61
olonS	Profilo	(7 – 22 cm)	19,50	45,40	4,9	2408	0,	16	0,3	13,66	1,35	40,1	2,9	8,29
9 2		(80-100 cm)	11,40	138,07	3,8	526	0,	16	6,3	10,15	3,51	38,8	20,9	11,64
DIS	3 - Microelen	nenti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb		Se	Sn	Sr	Tl	V	Zn
0		(0-7 cm)	5,20	6,464	6,94	297	2	61	1,81	0,66	555	32,01	24,04	257
olonS	Profilo	(7 - 22 cm)	3,08	4,106	1,33	394	1	73	0,54	0,50	554	28,90	6,55	716
91		(80-100 cm)	3,05	6,794	16,40	371	2	92	1,48	0,65	523	74,03	17,18	593

DI	S 4												
DIS	4 – Macroele	menti (mg kg ⁻¹)	Al	Ca	Fe	K	M	g	Mn	Na	P	S	Ti
ıIi	Graminacee	foglie	940	6796	2927	7 65	520	1070	76,9	851	1434	2599	14,8
Vegetali	Grammacee	radici	5887	5941	19042	2 58	307	1729	306	804	881	2760	45,2
Λ	Muschio	fusticino	1192	2847	7109	4()64	771	26,6	788	746	2722	14,7
0		A (0-3,5 cm)	9494	1393	35564	37	782	895	64	359	400	5167	158,6
Suolo	Profilo	AB (4,5-9 cm)	4942	312	38220	19	994	415	41	186	184	4195	93,8
•		C (9-30 cm)	7076	328	4972	2 31	191	351	21	325	100	5461	89,5
DIS	DIS 4 - Microelementi (mg kg ⁻¹)		Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
ıli	Ci	foglie	0,63	4,22	3,79	2092	<0,002	0,07	3,0	60 <0,0	6 19,01	13,5	0,05
Vegetali	Graminacee	radici	1,53	65,1	5,26	2248	0,14	1,08	13,	19 5,1	3 78,1	37,5	0,37
Λ	Muschio	fusticino	3,39	24,6	1,93	2344	<0,002	0,33	5,	32 0,4	8 178,7	11,5	0,16
0		A (0-3,5 cm)	22,57	180,2	11,1	2374	0,47	1,41	13,	15 2,6	5 41,1	24,6	9,57
Suolo	Profilo	AB (4,5-9 cm)	8,10	144,5	6,0	2424	0,32	0,32	8,	10 1,8	50,4	11,6	5,29
91		C (9-30 cm)	25,30	41,0	8,6	2403	0,47	0,33	15,	21 1,3	9 22,9	10,8	4,11
DIS	4 - Microelen	nenti (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
ali	Graminacee	foglie	3,25	2,48	4,16	75,5	22,8	0,09	0,	03 10	5 85,3	5,28	74,8
Vegetali	Grammacee	radici	8,92	9,58	7,83	103	18,9	0,87	0,	23 22	5 52,0	16,82	153,9
Λ	Muschio	fusticino	2,32	8,58	5,84	129	24,88	0,54	0,	17 26	3 13,6	4,93	60,92
0		A (0-3,5 cm)	13,54	8,327	8,48	818	368,09	1,56	1,	54 54	5 78,9	31,44	233,3
Suolo	Profilo	AB (4,5-9 cm)	6,60	7,708	6,77	252	257,45	1,27	0,	87 56	1 43,7	28,61	206,0
• 4		C (9-30 cm)	5,67	2,837	1,11	1135	154,45	0,23	0,	88 54	9 74,1	14,50	143,4

DI	S 5												
DIS	5 – Macroelement	i (mg kg ⁻¹)	Al	Ca	Fe	K	N	Ig	Mn	Na	P	S	Ti
Veg.	Graminacee	foglie	1032	5611	1 430)4 81	127	1122	60,8	828	1757	3909	16,6
Ve	Graminacee	radici	11001	5890	2645	56 74	106	2551	372,0	858	803	3480	78,5
		A (0-2/4)	21600	13790	7071	13 5	700	4139	628	480	851	6646	402,0
Suolo	Profilo	Bw (2/4-8)	28255	18362	706	77 79	907	5429	691	583	677	6822	472,4
Su	Tionio	Bs (8-9 cm)	20764	4368	9610)2 70	080	3182	434	543	677	7430	394,7
		BC (9-11cm)	14766	354	7 768	75 49)22	2117	196	535	523	8672	305,0
DIS	DIS 5- Microelementi (mg kg ⁻¹)		Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
Veg.	Graminacee	foglie	1,10	5,91	3,23	2344	<0,002	0,07	3,50	<0,06	31,3	14,6	<0,05
^	Grammacee	radici	1,79	66,27	7,06	2380	0,14	1,08	25,51	5,13	138,1	62,9	0,37
		A (0-2/4)	8,36	142,06	18,4	2389	1,02	13,8	29,33	11,04	53,8	56,1	7,13
olonS	Profilo	Bw (2/4-8)	6,91	129,40	23,6	2414	1,27	18,4	34,27	12,90	48,2	71,1	6,62
Su	Tionio	Bs (8-9 cm)	8,75	205,17	18,9	2434	0,72	4,4	22,75	7,31	39,1	47,3	9,15
		BC (9-11cm)	12,97	174,84	13,8	2367	0,55	3,5	19,69	5,61	34,3	42,2	7,81
DIS	5- Microelementi (mg kg ⁻¹)	Li	Mo	Ni	Pb	Sb	Se	Sn	Sr	Tl	V	Zn
Veg.	Graminacee	foglie	4,45	3,61	3,65	33,1	7,31	<0,02	0,36	132,28	2,5	2,45	62,5
>	Grammacee	radici	45,93	15,89	23,36	130,3	15,10	0,87	0,23	344,54	18,8	28,37	233,1
		A (0-2/4)	73,47	9,145	37,45	264,3	258,57	<0,10	2,69	556,6	23,33	59,20	467,0
Suolo	Profilo	Bw (2/4-8)	93,39	8,706	39,97	227,2	239,02	<0,10	4,39	558,8	22,00	69,89	412,8
Su	1101110	Bs (8-9 cm)	71,76	9,944	24,50	241,8	291,17	<0,10	3,59	560,9	28,24	61,81	287,1
		BC (9-11cm)	50,08	8,828	19,14	402,2	239,06	< 0,10	2,45	552,3	27,97	45,16	456,2

DIS	DIS 6												
DIS	6– Macroeleme	enti (mg kg ⁻¹)	Al	Ca	Fe	K	M	Ig	Mn	Na	P	S	Ti
	Craminaga	foglie	358	474	5 56	49 74	412	1791	400	2229	1027	1982	6,91
	Graminacee	radici	699	3992	2 217	03 3	504	798	387	705	808	2792	10,7
		foglie	93	1614	4 8	86 62	291	3917	93	334	983	1361	3,43
	Edera	fusto	76	1068	5 11:	28 49	946	1357	59	622	550	577	3,03
		radici	1820	719	1 310:	51 5	198	2397	699	462	1005	3014	22,6
Vegetali		foglie	414	1213	3 46			4941	180	672	793	1562	7,72
⁷ eg(Rovo	fusto	203	747	1 14:			2858	101	741	561	580	4,64
		radici	97	689	9 19	21 2		1250	96	1123	319	738	2,79
		foglie	174	5118	3 14	08 7	153	2926	73	1443	740	1230	4,13
	Felce	fusto	96	311:	5 69	98 83	379	1320	45	637	454	580	3,08
		radici	437	698	5 122	85 50	050	1458	231	489	522	1601	6,05
	Muschio	fusticino	898	733				2145	350	969	1104	1589	13,42
		O (6-0 cm)	688	1498	6 90	37 1	196	1682	366	383	723	2128	10,44
Suolo	Profilo	(0-4 cm)	6848	251	982	44 2'	729	1421	1117	186	854	6696	155,2
Sn	Tiomo	BC (4-7 cm)	5951	86	1781	48 2.	356	1232	1372	162	1038	6463	133,5
		2C/D (7-30 cm)	5729	6271	1 198	82 3'	788 42	2986	1996	236	77	12417	170,3
DIS6	- Microelem		Ag	As	В	Ba	Be	Co		Со	Cr	Cu	Hg
	Graminacee	foglie	0,38	16,2	2,95	2407	<0,02	0,0		<0,06	5,38	12,58	0,11
		radici	2,41	125,4	2,54	2393	<0,02	0,2	_	1,23	29,52	11,84	0,32
		foglie	0,55	0,89	13,05	1048	<0,02	0,02		<0,06	3,37	8,15	0,12
	Edera	fusto	0,32	0,86	8,81	768	<0,02	0,10		<0,06	5,77	6,83	0,08
ΙΙ		radici	2,71	145,3	6,41	2365	<0,02	0,03		3,52	171,91	31,41	0,82
Vegetali		foglie	0,12	14,51	18,64	2417	<0,02	0,02		<0,06	14,20	11,26	0,09
Veg	Rovo	fusto	0,01	3,41	8,50	1225	<0,02	0,02		<0,06	5,72	7,05	0,04
		radici	0,02	4,40	7,00	1395	<0,02	0,0		<0,06	1,08	4,23	0,05
		foglie	0,01	3,04	9,23	620	<0,02	0,02		<0,06	4,32	7,13	0,06
	Felce	fusto	0,01	<0,05	6,18	417	<0,02	0,02		<0,06	4,66	8,06	0,03
		radici	2,35	41,26	4,83	2429	<0,02	0,04		0,50	5,85	14,58	0,20
	Muschio	fusticino	0,07	10,56	4,52	2423	<0,02	0,0		0,24	21,68	10,17	0,10
		O (6-0 cm)	0,36	32,12	13,47	2399	0,01	0,00		0,11	4,38	9,80	0,20
olonS	Profilo	(0-4 cm)	7,27	284,68	13,5	2442	0,80	2,		6,88	31,3	16,7	18,2
S		BC (4-7 cm)	8,14	581,09	6,8	2371	0,54	0,9		5,96	19,4	21,3	29,76
		2C/D (7-30 cm)	2,12	108,37	12,7	2373	2,20	62,		2,72	31,4	5,2	18,07
DIS	<mark>6 - Microeleme</mark>	1	Li	Mo	Ni	Pb	Sb	S		Sr		V	Zn
	Graminacee	foglie	1,21	2,00	4,48	43,2	14,49	<0,02		68,1	38,7	3,42	59,7
	-	radici	1,72	9,20	10,56	140,9	42,16	1,34		156,1	163,8	9,20	109,2
	.	foglie	0,39	0,27	0,10	3,68	3,57	0,4		84,97	<0,25	0,24	84,96
	Edera	fusto	0,41	0,39	0,48	5,42	3,85	0,09		70,50	0,45	0,16	47,33
'		radici	6,42	23,81	27,29	229,5	47,86	2,33	-	319,0	123,6	31,09	133,6
Vegetali		foglie	1,27	1,81	2,86	26,2	11,34	<0,02		130,4	10,2	3,11	30,7
Veg	Rovo	fusto	0,58	0,43	0,66	9,7	5,19	<0,02		57,9	14,0	0,77	28,9
		radici	0,45	0,44	2,59	28,8	6,65	<0,02		56,5	77,5	0,71	16,2
		foglie	0,63	0,01	1,90	9,9	5,22	<0,02		35,9	33,5	0,71	21,9
	Felce	fusto	0,40	0,01	0,50	6,4	3,16	<0,02		24,4	48,5	0,23	21,2
) (1:	radici	1,53	4,43	24,77	108,9	55,83	<0,02		127,0	138,0	15,37	87,5
	Muschio	fusticino	1,65	1,71	3,57	22,4	7,41	<0,02		107,1	10,9	4,64	50,8
		O (6-0 cm)	1,66	3,16	5,10	57,6	20,25	<0,02		164,5	24,6	6,21	49,8
Suolo	Profilo	(0-4 cm)	15,32	13,168	39,11	409,8	287,3	3,83		563,4	184,60	68,64	353,2
Š		BC (4-7 cm)	21,00	35,878	53,55	862,0	548,6	8,4		529,3	436,57	113,91	409,8
		2C/D (7-30 cm)	14,38	6,680	16,58	65,5	110,8	1,6	5 0,49	281,3	44,87	187,82	299,1

DI	S 7												
DIS	<mark>7 – Macroelem</mark>	enti (mg kg ⁻¹)	Al	Ca	Fe	K	M	[g	Mn	Na	P	S	Ti
		foglie	105	18524	48	1 67	74 4	1215	140,2	327	1115	1138	3,62
=	Edera	fusto	119	11788	194	0 62	276 1	351	85,2	541	667	717	3,68
Vegetali		radici	542	10747	2455	4 57	753 2	292	394,4	1019	701	3271	9,96
Ve	Muschio	fusticino	473	5158	633	9 28	305 1	449	77,0	489	497	1893	8,34
	Lichene	tallo	804	3533	3188	0 19	062	648	370,3	569	395	3421	14,59
		Oi (3-0)	316	17308	126	1 11	51 1	596	193,4	481	572	929	6,34
olo		A (0-2)	1719	4859	21444	3 5	87 1	892	1672	104	441	5495	48,0
Suolo	Profilo	B (2-8)	2248	41009	17736	6 11	20 23	8659	1554	217	978	8281	82,1
		C/D (8-30 cm)	3911	1719	19432	3 14	146 1	026	110	109	522	4689	95,2
DIS	7 - Microeleme	enti (mg kg ⁻¹)	Ag	As	В	Ba	Be	Cd	Ce	Со	Cr	Cu	Hg
		foglie	0,01	0,02	11,54	274	<0,02	0,01	.5 1,68	<0,06	2,15	10,6	0,03
al:	Edera	fusto	0,04	1,68	9,13	949	<0,02	0,01	5 1,74	<0,06	7,60	8,0	0,06
Vegetali		radici	1,47	49,94	6,86	2376	<0,02	0,02	25 4,7 7	3,46	58,55	59,0	0,36
>	Muschio	fusticino	0,26	8,88	2,49	2329	<0,02	0,0	2,28	0,17	12,47	8,2	0,11
	Lichene	tallo	0,52	61,24	1,89	2398	<0,02	0,08		+		145,8	0,17
		Oi (3-0)	0,66	1,75	11,91	1663	<0,02	0,0	2,22	<0,06	1,33	8,2	0,04
Suolo	Profilo	A (0-2)	3,36	348,82	1,8	2402	0,05	4.				524,4	5,31
Š		B (2-8)	5,24	342,98	6,9	2390	0,16	41.				107,3	12,38
DIC	7 74: 1	C/D (8-30 cm)	18,66	474,26	7,4	2379 Pb	0,08	1,			14,9 Tl	62,8 V	55,99
DIS	<mark>7 - Microeleme</mark>	1	Li 0,37	Mo 0,06	Ni 0.02		Sb	Se	Sn	Sr 57.30		0,04	Zn 76,69
	Edera	foglie	0,37	0,00	0,03 0,74	1,34 4,80	1,90 5,36	0,5			-	0,04	40,75
Vegetal	Eucla	radici	0,99	14,70	13,20	41,01	41,64	0,9		+		7,40	53,42
Veg	Muschio	fusticino	0,73	4,90	2,28	11,38	12,86	0,4				3,81	20,18
	Lichene	tallo	1,24	16,03	40,51	42,82	21,69	1,7				5,28	60,13
		Oi (3-0)	0,60	0,54	2,76	5,74	5,67	0,6				0,85	28,34
olo	D CI	A (0-2)	1,73	22,06	129,28	104,1	231,6	4,3	_	534,5	24,02	13,19	132,3
Suolo	Profilo	B (2-8)	3,23	62,386	60,57	129,0	552,8	5,8	34 14,67	541,0	81,86	78,86	288,0
		C/D (8-30 cm)	4,43	39,27	9,56	157,0	1469	3,2	2,71	482,1	71,70	41,99	256,7

Risultati analisi microbiologiche (Galleria Ribasso Pianello, Miniera di Monte Arsiccio - PIA2)

Sigla campione	Coppia di primers	Specificità	Risultato
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
DIA2 EVT	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
PIA2-EXT	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Livello Ribasso Pianello	EUB27F/LEPTO679R	Leptospirillum	-
Esterno galleria	LEPTO176F/LEPTO679R	Leptospirillum	-
Acqua	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
0140.671	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
PIA2-STL	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Livello Ribasso Pianello	EUB27F/LEPTO679R	Leptospirillum	-
Interno galleria Stillicidi	LEPTO176F/LEPTO679R	Leptospirillum	-
Stillicial	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
PIA2-SLM	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
Livello Ribasso Pianello	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	-
Materiale	LEPTO176F/LEPTO679R	Leptospirillum	-
mucillaginoso	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
PIA2-RCK	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
Livello Ribasso Pianello	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	-
Acqua con frammenti	LEPTO176F/LEPTO679R	Leptospirillum	-
di roccia	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	+
PIA2-PLA	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	+
Livello Sant'Olga	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	+
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	-
Materiale	LEPTO176F/LEPTO679R	Leptospirillum	+
mucillaginoso rosa	EUB27F/SULFO1137R	Sulfobacillus	+
	SULFO170F/SULFO606R	Sulfobacillus	+
	I .	l .	l .

Risultati analisi microbiologiche (Galleria Sant'Olga, Miniera di Monte Arsiccio - OLG)

Sigla campione	Coppia di primers	Specificità	Risultato
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
OLC EVT	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
OLG-EXT	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Livello Sant'Olga	EUB27F/LEPTO679R	Leptospirillum	-
Esterno galleria	LEPTO176F/LEPTO679R	Leptospirillum	-
Acqua	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
0.00	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
OLG-STL	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	+
Livello Sant'Olga	EUB27F/LEPTO679R	Leptospirillum	-
Interno galleria Stillicidi	LEPTO176F/LEPTO679R	Leptospirillum	-
Stilliciai	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	+
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
OLG-SLM	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
Livello Sant'Olga	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	-
Materiale	LEPTO176F/LEPTO679R	Leptospirillum	-
mucillaginoso	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
OLG-RCK	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
Livello Sant'Olga	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	+
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	-
Acqua con frammenti	LEPTO176F/LEPTO679R	Leptospirillum	+
di roccia	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	+
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	+
OLG-PLA	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	+
Livello Sant'Olga	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	+
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	+
Materiale	LEPTO176F/LEPTO679R	Leptospirillum	+
mucillaginoso rosa	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	+
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
OLG-RED	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Livello Sant'Olga	EUB27F/LEPTO679R	Leptospirillum	-
Interno galleria	LEPTO176F/LEPTO679R	Leptospirillum	-
Acqua pozze stagnanti	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-

Risultati analisi microbiologiche (Galleria Sant'Anna, Miniera di Monte Arsiccio – ANN)

Sigla campione	Coppia di primers	Specificità	Risultato
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
ANN-STL Livello Sant'Anna	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	1
	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	1
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	1
Stillicidi	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-

Risultati analisi microbiologiche (Galleria Rosina, Miniera del Pollone - POL)

Sigla campione	Coppia di primers	Specificità	Risultato
POL-STL Livello Galleria Rosina Interno galleria Stillicidi	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	-
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
POL-SLM Livello Galleria Rosina	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	-
Interno galleria	EUB27F/LEPTO679R	Leptospirillum	-
Materiale	LEPTO176F/LEPTO679R	Leptospirillum	-
mucillaginoso	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-
POL-RED Livello Galleria Rosina Interno galleria Acqua pozze stagnanti	Fi-Thio/R1-Thio	Acidithiobacillus ferrooxidans	-
	FEROO458F/EUB1492R	Acidithiobacillus ferrooxidans	-
	FERRO458F/FERRO1473R	Acidithiobacillus ferrooxidans	+
	EUB27F/LEPTO679R	Leptospirillum	-
	LEPTO176F/LEPTO679R	Leptospirillum	+
	EUB27F/SULFO1137R	Sulfobacillus	-
	SULFO170F/SULFO606R	Sulfobacillus	-

Note: "+", esito positivo; "-" esito negativo.